BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37300776)

  • 41. A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing.
    Iida M; Suzuki M; Sakane Y; Nishide H; Uchiyama I; Yamamoto T; Suzuki KT; Fujii S
    Genes Cells; 2020 Jul; 25(7):498-509. PubMed ID: 32323394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages.
    Smith LM; Jackson SA; Malone LM; Ussher JE; Gardner PP; Fineran PC
    Nat Microbiol; 2021 Feb; 6(2):162-172. PubMed ID: 33398095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids.
    Hendriks D; Clevers H; Artegiani B
    Cell Stem Cell; 2020 Nov; 27(5):705-731. PubMed ID: 33157047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease phenotypes in a kidney organoid model.
    Cui S; Shin YJ; Fang X; Lee H; Eum SH; Ko EJ; Lim SW; Shin E; Lee KI; Lee JY; Lee CB; Bae SK; Yang CW; Chung BH
    Transl Res; 2023 Aug; 258():35-46. PubMed ID: 36805562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids.
    Martinez-Silgado A; Yousef Yengej FA; Puschhof J; Geurts V; Boot C; Geurts MH; Rookmaaker MB; Verhaar MC; Beumer J; Clevers H
    STAR Protoc; 2022 Sep; 3(3):101639. PubMed ID: 36042877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intestinal Failure and Aberrant Lipid Metabolism in Patients With DGAT1 Deficiency.
    van Rijn JM; Ardy RC; Kuloğlu Z; Härter B; van Haaften-Visser DY; van der Doef HPJ; van Hoesel M; Kansu A; van Vugt AHM; Thian M; Kokke FTM; Krolo A; Başaran MK; Kaya NG; Aksu AÜ; Dalgıç B; Ozcay F; Baris Z; Kain R; Stigter ECA; Lichtenbelt KD; Massink MPG; Duran KJ; Verheij JBGM; Lugtenberg D; Nikkels PGJ; Brouwer HGF; Verkade HJ; Scheenstra R; Spee B; Nieuwenhuis EES; Coffer PJ; Janecke AR; van Haaften G; Houwen RHJ; Müller T; Middendorp S; Boztug K
    Gastroenterology; 2018 Jul; 155(1):130-143.e15. PubMed ID: 29604290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-solution fluorescence in situ hybridization and fluorescence-activated cell sorting for single cell and population genome recovery.
    Haroon MF; Skennerton CT; Steen JA; Lachner N; Hugenholtz P; Tyson GW
    Methods Enzymol; 2013; 531():3-19. PubMed ID: 24060113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR-Cas9-based repeat depletion for high-throughput genotyping of complex plant genomes.
    Rossato M; Marcolungo L; De Antoni L; Lopatriello G; Bellucci E; Cortinovis G; Frascarelli G; Nanni L; Bitocchi E; Di Vittori V; Vincenzi L; Lucchini F; Bett KE; Ramsay L; Konkin DJ; Delledonne M; Papa R
    Genome Res; 2023 May; 33(5):787-797. PubMed ID: 37127332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification of specific cell population by fluorescence activated cell sorting (FACS).
    Basu S; Campbell HM; Dittel BN; Ray A
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate.
    Hansen SL; Larsen HL; Pikkupeura LM; Maciag G; Guiu J; Müller I; Clement DL; Mueller C; Johansen JV; Helin K; Lerdrup M; Jensen KB
    Sci Adv; 2023 Jul; 9(28):eadg4055. PubMed ID: 37436979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling Human Digestive Diseases With CRISPR-Cas9-Modified Organoids.
    Fujii M; Clevers H; Sato T
    Gastroenterology; 2019 Feb; 156(3):562-576. PubMed ID: 30476497
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
    Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H
    Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.
    Gopalappa R; Song M; Chandrasekaran AP; Das S; Haq S; Koh HC; Ramakrishna S
    Arch Pharm Res; 2018 Sep; 41(9):911-920. PubMed ID: 29855892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS).
    Fong CY; Peh GS; Gauthaman K; Bongso A
    Stem Cell Rev Rep; 2009 Mar; 5(1):72-80. PubMed ID: 19184635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR/Cas9-Based Gene Engineering of Human Natural Killer Cells: Protocols for Knockout and Readouts to Evaluate Their Efficacy.
    Lambert M; Leijonhufvud C; Segerberg F; Melenhorst JJ; Carlsten M
    Methods Mol Biol; 2020; 2121():213-239. PubMed ID: 32147798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome Editing with CRISPR-Cas9: A Budding Biological Contrivance for Colorectal Carcinoma Research and its Perspective in Molecular Medicine.
    Ray SK; Mukherjee S
    Curr Mol Med; 2021; 21(6):462-475. PubMed ID: 33213345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids.
    Zhao J; Fu Y; Yamazaki Y; Ren Y; Davis MD; Liu CC; Lu W; Wang X; Chen K; Cherukuri Y; Jia L; Martens YA; Job L; Shue F; Nguyen TT; Younkin SG; Graff-Radford NR; Wszolek ZK; Brafman DA; Asmann YW; Ertekin-Taner N; Kanekiyo T; Bu G
    Nat Commun; 2020 Nov; 11(1):5540. PubMed ID: 33139712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A functional genetic toolbox for human tissue-derived organoids.
    Sun D; Evans L; Perrone F; Sokleva V; Lim K; Rezakhani S; Lutolf M; Zilbauer M; Rawlins EL
    Elife; 2021 Oct; 10():. PubMed ID: 34612202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.