These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37300906)

  • 1. Deep-learning-assisted and GPU-accelerated vector Doppler imaging with aliasing-resistant velocity estimation.
    Nahas H; Yiu BYS; Chee AJY; Au JS; Yu ACH
    Ultrasonics; 2023 Sep; 134():107050. PubMed ID: 37300906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GPU-Based, Real-Time Dealiasing Framework for High-Frame-Rate Vector Doppler Imaging.
    Nahas H; Ishii T; Yiu BYS; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1384-1400. PubMed ID: 37549086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Approach to Resolve Aliasing Artifacts in Ultrasound Color Flow Imaging.
    Nahas H; Au JS; Ishii T; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2615-2628. PubMed ID: 32746180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Extended Least Squares Method for Aliasing-Resistant Vector Velocity Estimation.
    Ekroll IK; Avdal J; Swillens A; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1745-1757. PubMed ID: 27824558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dealiasing High-Frame-Rate Color Doppler Using Dual-Wavelength Processing.
    Poree J; Goudot G; Pedreira O; Laborie E; Khider L; Mirault T; Messas E; Julia P; Alsac JM; Tanter M; Pernot M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2117-2128. PubMed ID: 33534706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined 2-D Vector Velocity Imaging and Tracking Doppler for Improved Vascular Blood Velocity Quantification.
    Avdal J; Lovstakken L; Torp H; Ekroll IK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1795-1804. PubMed ID: 28961109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of flow velocity vectors in carotid artery using plane wave imaging with repeated transmit sequence.
    Hasegawa H; Mozumi M; Omura M; Nagaoka R; Saito K
    J Med Ultrason (2001); 2021 Oct; 48(4):417-427. PubMed ID: 34287752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based velocity antialiasing of 4D-flow MRI.
    Berhane H; Scott MB; Barker AJ; McCarthy P; Avery R; Allen B; Malaisrie C; Robinson JD; Rigsby CK; Markl M
    Magn Reson Med; 2022 Jul; 88(1):449-463. PubMed ID: 35381116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns.
    Yiu BY; Lai SS; Yu AC
    Ultrasound Med Biol; 2014 Sep; 40(9):2295-309. PubMed ID: 24972498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frame rate doppler ultrasound bandwidth imaging for flow instability mapping.
    Yiu BYS; Chee AJY; Tang G; Luo W; Yu ACH
    Med Phys; 2019 Apr; 46(4):1620-1633. PubMed ID: 30734923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Blood Velocity Vector Imaging Using Adaptive Velocity Compounding in the Carotid Artery Bifurcation.
    Saris AECM; Hansen HHG; Fekkes S; Menssen J; Nillesen MM; de Korte CL
    Ultrasound Med Biol; 2019 Jul; 45(7):1691-1707. PubMed ID: 31079874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.
    Ekroll IK; Dahl T; Torp H; Løvstakken L
    Ultrasound Med Biol; 2014 Jul; 40(7):1629-40. PubMed ID: 24785436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
    Xiao D; Pitman WMK; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2849-2861. PubMed ID: 35862334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic Vascular Vector Flow Mapping for 2-D Flow Estimation.
    Asami R; Tanaka T; Shimizu M; Seki Y; Nishiyama T; Sakashita H; Okada T
    Ultrasound Med Biol; 2019 Jul; 45(7):1663-1674. PubMed ID: 31003710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Influence of Flow Velocity, Wall Motion Filter, Pulse Repetition Frequency, and Aliasing on Power Doppler Image Quantification.
    Martins MR; Martins WP; Soares CAM; Miyague AH; Kudla MJ; Pavan TZ
    J Ultrasound Med; 2018 Jan; 37(1):255-261. PubMed ID: 28736982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate blood peak velocity estimation using spectral models and vector doppler.
    Ricci S; Vilkomerson D; Matera R; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):686-96. PubMed ID: 25881346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Ultrasound Doppler Angle Estimation Using Deep Learning.
    Patil N; Anand A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():28-31. PubMed ID: 31945837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow.
    Kang J; Jang WS; Yoo Y
    Phys Med Biol; 2018 Feb; 63(4):045004. PubMed ID: 29334078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation.
    Huang H; Chen PY; Huang CC
    Med Phys; 2020 Sep; 47(9):4020-4031. PubMed ID: 32609885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.