These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37300956)

  • 1. Remediation of marine dead zones by enhancing microbial sulfide oxidation using electrodes.
    Brock AL; Kostadinova K; Mørk-Pedersen E; Hensel F; Zhang Y; Valverde-Pérez B; Stedmon CA; Trapp S
    Mar Pollut Bull; 2023 Aug; 193():115142. PubMed ID: 37300956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland.
    Khoroshko LO; Petrova VN; Takhistov VV; Viktorovskii IV; Lahtiperä M; Paasivirta J
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):366-76. PubMed ID: 17993219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel method to immobilize phosphate in lakes using sediment microbial fuel cells.
    Haxthausen KAV; Lu X; Zhang Y; Gosewinkel U; Petersen DG; Marzocchi U; Brock AL; Trapp S
    Water Res; 2021 Jun; 198():117108. PubMed ID: 33901841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.
    Broman E; Sjöstedt J; Pinhassi J; Dopson M
    Microbiome; 2017 Aug; 5(1):96. PubMed ID: 28793929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover of lake sediments treated with sediment microbial fuel cells: a long-term study in a eutrophic lake.
    Lu X; von Haxthausen KA; Brock AL; Trapp S
    Sci Total Environ; 2021 Nov; 796():148880. PubMed ID: 34271375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens.
    Algar CK; Howard A; Ward C; Wanger G
    Sci Rep; 2020 Aug; 10(1):13087. PubMed ID: 32753606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells.
    Touch N; Hibino T; Morimoto Y; Kinjo N
    Environ Technol; 2017 Dec; 38(23):3016-3025. PubMed ID: 28112574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of
    Patil MP; Jeong I; Woo HE; Oh SJ; Kim HC; Kim K; Nakashita S; Kim K
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High spatial resolution analysis of the distribution of sulfate reduction and sulfide oxidation in hypoxic sediment in a eutrophic estuary.
    Rathnayake RM; Sugahara S; Maki H; Kanaya G; Seike Y; Satoh H
    Water Sci Technol; 2017 Jan; 75(2):418-426. PubMed ID: 28112669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk control and assessment of sulfide-rich sediment remediation by controlled-release calcium nitrate.
    Yang X; Zhong M; Pu J; Liu C; Luo H; Xu M
    Water Res; 2022 Nov; 226():119230. PubMed ID: 36270148
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Callbeck CM; Pelzer C; Lavik G; Ferdelman TG; Graf JS; Vekeman B; Schunck H; Littmann S; Fuchs BM; Hach PF; Kalvelage T; Schmitz RA; Kuypers MMM
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function.
    Yang X; Chen S
    Sci Total Environ; 2021 Feb; 756():144145. PubMed ID: 33303196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.
    Gong W; Liu X; Xia S; Liang B; Zhang W
    J Hazard Mater; 2016 Jun; 310():125-34. PubMed ID: 26905610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental changes affect the microbial release of hydrogen sulfide and methane from sediments at Boknis Eck (SW Baltic Sea).
    Perner M; Wallmann K; Adam-Beyer N; Hepach H; Laufer-Meiser K; Böhnke S; Diercks I; Bange HW; Indenbirken D; Nikeleit V; Bryce C; Kappler A; Engel A; Scholz F
    Front Microbiol; 2022; 13():1096062. PubMed ID: 36620042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coastal eutrophication thresholds: a matter of sediment microbial processes.
    Lehtoranta J; Ekholm P; Pitkänen H
    Ambio; 2009 Sep; 38(6):303-8. PubMed ID: 19860153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.
    Zhou YL; Jiang HL; Cai HY
    J Hazard Mater; 2015 Apr; 287():7-15. PubMed ID: 25621829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of overlying water aeration system powered by sediment-microbial-fuel-cell for nutrient suppression.
    Matsuki M; Hirakawa S
    Water Sci Technol; 2023 May; 87(10):2553-2563. PubMed ID: 37257109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures.
    Ye TR; Song N; Chen M; Yan ZS; Jiang HL
    Environ Pollut; 2016 Nov; 218():59-65. PubMed ID: 27552038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.
    Xu P; Xiao E; Xu D; Li J; Zhang Y; Dai Z; Zhou Q; Wu Z
    Environ Technol; 2018 May; 39(9):1144-1157. PubMed ID: 28443365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.