Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37300984)

  • 1. Classification of colorectal cancer consensus molecular subtypes using attention-based multi-instance learning network on whole-slide images.
    Xu H; Wu A; Ren H; Yu C; Liu G; Liu L
    Acta Histochem; 2023 Aug; 125(6):152057. PubMed ID: 37300984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative multiple instance learning for weakly annotated whole slide image classification.
    Zhou Y; Che S; Lu F; Liu S; Yan Z; Wei J; Li Y; Ding X; Lu Y
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37311470
    [No Abstract]   [Full Text] [Related]  

  • 3. [Identifying Molecular Subtypes of Whole-Slide Image in Colorectal Cancer via Deep Learning].
    Liao J; Feng XB; Wang YH; Guo LC
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):686-692. PubMed ID: 34323050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAMPLER: unsupervised representations for rapid analysis of whole slide tissue images.
    Mukashyaka P; Sheridan TB; Foroughi Pour A; Chuang JH
    EBioMedicine; 2024 Jan; 99():104908. PubMed ID: 38101298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma.
    Sun X; Li W; Fu B; Peng Y; He J; Wang L; Yang T; Meng X; Li J; Wang J; Huang P; Wang R
    Comput Methods Programs Biomed; 2023 Dec; 242():107789. PubMed ID: 37722310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas.
    Cai H; Feng X; Yin R; Zhao Y; Guo L; Fan X; Liao J
    J Pathol; 2023 Feb; 259(2):125-135. PubMed ID: 36318158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: molecular analysis of the AGITG MAX clinical trial.
    Mooi JK; Wirapati P; Asher R; Lee CK; Savas P; Price TJ; Townsend A; Hardingham J; Buchanan D; Williams D; Tejpar S; Mariadason JM; Tebbutt NC
    Ann Oncol; 2018 Nov; 29(11):2240-2246. PubMed ID: 30247524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications.
    Soldevilla B; Carretero-Puche C; Gomez-Lopez G; Al-Shahrour F; Riesco MC; Gil-Calderon B; Alvarez-Vallina L; Espinosa-Olarte P; Gomez-Esteves G; Rubio-Cuesta B; Sarmentero J; La Salvia A; Garcia-Carbonero R
    Eur J Cancer; 2019 Dec; 123():118-129. PubMed ID: 31678770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Value of Consensus Molecular Subtypes in Colorectal Cancer: A Systematic Review and Meta-Analysis.
    Ten Hoorn S; de Back TR; Sommeijer DW; Vermeulen L
    J Natl Cancer Inst; 2022 Apr; 114(4):503-516. PubMed ID: 34077519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning.
    Zhao L; Xu X; Hou R; Zhao W; Zhong H; Teng H; Han Y; Fu X; Sun J; Zhao J
    Phys Med Biol; 2021 Dec; 66(23):. PubMed ID: 34794136
    [No Abstract]   [Full Text] [Related]  

  • 11. Second-order multi-instance learning model for whole slide image classification.
    Wang Q; Zou Y; Zhang J; Liu B
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34181583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of colorectal cancer in accordance with consensus molecular subtype classification.
    Sawayama H; Miyamoto Y; Ogawa K; Yoshida N; Baba H
    Ann Gastroenterol Surg; 2020 Sep; 4(5):528-539. PubMed ID: 33005848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic subtypes predict outcomes in colorectal cancer.
    Kasurinen J; Beilmann-Lehtonen I; Kaprio T; Hagström J; Haglund C; Böckelman C
    Acta Oncol; 2023 Mar; 62(3):245-252. PubMed ID: 36867078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofilin-1, LIMK1 and SSH1 are differentially expressed in locally advanced colorectal cancer and according to consensus molecular subtypes.
    Sousa-Squiavinato ACM; Vasconcelos RI; Gehren AS; Fernandes PV; de Oliveira IM; Boroni M; Morgado-Díaz JA
    Cancer Cell Int; 2021 Jan; 21(1):69. PubMed ID: 33482809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning.
    Zhou C; Jin Y; Chen Y; Huang S; Huang R; Wang Y; Zhao Y; Chen Y; Guo L; Liao J
    Comput Med Imaging Graph; 2021 Mar; 88():101861. PubMed ID: 33497891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of patients with metastatic colorectal cancer into consensus molecular subtypes into real-world: A pilot study.
    González-Montero J; Burotto M; Valenzuela G; Mateluna D; Buen-Abad F; Toro J; Barajas O; Marcelain K
    World J Clin Oncol; 2023 Oct; 14(10):409-419. PubMed ID: 37970108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.
    Su Z; Rezapour M; Sajjad U; Gurcan MN; Niazi MKK
    Comput Biol Med; 2023 Dec; 167():107607. PubMed ID: 37890421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning.
    Tan L; Li H; Yu J; Zhou H; Wang Z; Niu Z; Li J; Li Z
    Med Biol Eng Comput; 2023 Jun; 61(6):1565-1580. PubMed ID: 36809427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
    Linnekamp JF; Hooff SRV; Prasetyanti PR; Kandimalla R; Buikhuisen JY; Fessler E; Ramesh P; Lee KAST; Bochove GGW; de Jong JH; Cameron K; Leersum RV; Rodermond HM; Franitza M; Nürnberg P; Mangiapane LR; Wang X; Clevers H; Vermeulen L; Stassi G; Medema JP
    Cell Death Differ; 2018 Mar; 25(3):616-633. PubMed ID: 29305587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image.
    Cao L; Wang J; Zhang Y; Rong Z; Wang M; Wang L; Ji J; Qian Y; Zhang L; Wu H; Song J; Liu Z; Wang W; Li S; Wang P; Xu Z; Zhang J; Zhao L; Wang H; Sun M; Huang X; Yin R; Lu Y; Liu Z; Deng K; Wang G; Qiu M; Li K; Wang J; Hou Y
    Med Image Anal; 2023 Aug; 88():102837. PubMed ID: 37216736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.