BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37301040)

  • 21. Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study.
    Ahn JY; Kim C; Kim HS; Hwang KY; Hwang I
    Water Res; 2016 Dec; 107():57-65. PubMed ID: 27837733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.
    Xin J; Han J; Zheng X; Shao H; Kolditz O
    J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gas phase reduction of chlorinated VOCs by zero valent iron.
    Uludag-Demirer S; Bowers AR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 Sep; 36(8):1535-47. PubMed ID: 11597112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.
    Parshetti GK; Doong RA
    Chemosphere; 2012 Jan; 86(4):392-9. PubMed ID: 22115467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater.
    Teerakun M; Reungsang A; Lin CJ; Liao CH
    J Environ Sci (China); 2011; 23(4):560-7. PubMed ID: 21793396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative study of the effects of particle' properties and environmental conditions on the electron efficiency of Pd and sulfidated nanoscale zero-valent irons.
    Gong L; Zhang Z; Xia C; Zheng J; Gu Y; He F
    Sci Total Environ; 2022 Dec; 853():158469. PubMed ID: 36058331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of nitrate in simultaneous removal of nitrate and trichloroethylene by sulfidated zero-valent Iron.
    Hou J; Wang A; Miao L; Wu J; Xing B
    Sci Total Environ; 2022 Jul; 829():154304. PubMed ID: 35304142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.
    Chen J; Gillham RW; Gui L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(1):48-56. PubMed ID: 23030387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation.
    Han Y; Yan W
    Water Res; 2014 Dec; 66():149-159. PubMed ID: 25201338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron.
    He F; Li Z; Shi S; Xu W; Sheng H; Gu Y; Jiang Y; Xi B
    Environ Sci Technol; 2018 Aug; 52(15):8627-8637. PubMed ID: 29952547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.
    Öztürk Z; Tansel B; Katsenovich Y; Sukop M; Laha S
    Chemosphere; 2012 Oct; 89(6):665-71. PubMed ID: 22795070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel nZVI-bentonite nanocomposite to remove trichloroethene (TCE) from solution.
    Baldermann A; Kaufhold S; Dohrmann R; Baldermann C; Letofsky-Papst I; Dietzel M
    Chemosphere; 2021 Nov; 282():131018. PubMed ID: 34119725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.
    Hwang HT; Jeen SW; Sudicky EA; Illman WA
    J Contam Hydrol; 2015; 177-178():43-53. PubMed ID: 25827100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using a high-organic matter biowall to treat a trichloroethylene plume at the Beaver Dam Road landfill.
    Niño de Guzmán GT; Hapeman CJ; Millner PD; McConnell LL; Jackson D; Kindig D; Torrents A
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8735-8746. PubMed ID: 29327189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles.
    Wang SM; Tseng SK
    Bioresour Technol; 2009 Jan; 100(1):111-7. PubMed ID: 18603424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.