These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37301073)

  • 1. Copper removal and recovery from electroplating effluent with wide pH ranges through hybrid capacitive deionization using CuSe electrode.
    Wang S; Zhuang H; Shen X; Zhao L; Pan Z; Liu L; Lv S; Wang G
    J Hazard Mater; 2023 Sep; 457():131785. PubMed ID: 37301073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Exchange Conversion of Na-Birnessite to Mg-Buserite for Enhanced and Preferential Cu
    Bao Y; Jin J; Ma M; Li M; Li F
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46646-46656. PubMed ID: 36210636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Cu(II)-EDTA decomplexation and Cu(II) recovery using integrated contact-electro-catalysis and capacitive deionization from electroplating wastewater.
    Shen X; Wang S; Zhao L; Song H; Li W; Li C; Lv S; Wang G
    J Hazard Mater; 2024 Jul; 472():134548. PubMed ID: 38728866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of MOF/polypyrrole and flower-like MnO
    Kang H; Zhang D; Chen X; Zhao H; Yang D; Li Y; Bao M; Wang Z
    Water Res; 2023 Feb; 229():119441. PubMed ID: 36470045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance.
    Wu G; Wang H; Huang L; Yan J; Chen X; Zhu H; Wu Y; Liu S; Shen X; Liu W; Liu X; Zhang H
    J Colloid Interface Sci; 2024 Apr; 659():993-1002. PubMed ID: 38224631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupling technology of capacitive deionization and MoS
    Hao Z; Cai Y; Wang Y; Xu S; Wang J
    J Colloid Interface Sci; 2020 Mar; 564():428-441. PubMed ID: 31923830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous removal of tetracycline and copper ions from wastewater by flow-electrode capacitive deionization.
    Tong P; Hang Z; Zhu W; Li Z
    Environ Technol; 2023 Dec; ():1-8. PubMed ID: 38158763
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution.
    Shen YY; Wu SW; Hou CH
    J Colloid Interface Sci; 2021 Mar; 586():819-829. PubMed ID: 33198978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective capture of ammonium ions from municipal wastewater treatment plant effluent with a nickel hexacyanoferrate electrode.
    Tsai SW; Cuong DV; Hou CH
    Water Res; 2022 Aug; 221():118786. PubMed ID: 35779455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum.
    Truong QM; Nguyen TB; Chen WH; Chen CW; Patel AK; Bui XT; Singhania RR; Dong CD
    Bioresour Technol; 2023 Feb; 370():128524. PubMed ID: 36572160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance.
    Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization.
    Byles BW; Hayes-Oberst B; Pomerantseva E
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32313-32322. PubMed ID: 30182718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization.
    Lee N; Liu ML; Wu MC; Chen TH; Hou CH
    Chemosphere; 2021 Jul; 274():129762. PubMed ID: 33548648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Dec; 284():131341. PubMed ID: 34323794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.
    Liu T; Yang X; Wang ZL; Yan X
    Water Res; 2013 Nov; 47(17):6691-700. PubMed ID: 24075723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of amorphous iron phosphate in pseudocapacitive sodium ion removal for water desalination.
    Bentalib A; Pan Y; Yao L; Peng Z
    RSC Adv; 2020 Apr; 10(29):16875-16880. PubMed ID: 35496930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.