These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37301102)

  • 1. Developing an alternative classification method for predicting ham composition using linear measurements from the cross-sectional ham surface.
    Wei X; Bohrer B; Uttaro B; Juárez M
    Meat Sci; 2023 Oct; 204():109237. PubMed ID: 37301102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of pork carcass composition based on cross-sectional region analysis of dual energy X-ray absorptiometry (DXA) scans.
    Mitchell AD; Scholz AM; Pursel VG
    Meat Sci; 2003 Feb; 63(2):265-71. PubMed ID: 22062187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry.
    López-Campos Ó; Roberts JC; Larsen IL; Prieto N; Juárez M; Dugan MER; Aalhus JL
    Meat Sci; 2018 Dec; 146():140-146. PubMed ID: 30145410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of predicting chemical body composition of growing pigs using dual-energy X-ray absorptiometry.
    Kasper C; Schlegel P; Ruiz-Ascacibar I; Stoll P; Bee G
    Animal; 2021 Aug; 15(8):100307. PubMed ID: 34273875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of percentage of fat in pork carcasses.
    Johnson LP; Miller MF; Haydon KD; Reagan JO
    J Anim Sci; 1990 Dec; 68(12):4185-92. PubMed ID: 2286560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: Prediction of chemical rib section composition by dual energy X-ray absorptiometry in Zebu beef cattle.
    Prados LF; Zanetti D; Amaral PM; Mariz LD; Sathler DF; Filho SC; Silva FF; Silva BC; Pacheco MC; Alhadas HM; Chizzotti ML
    J Anim Sci; 2016 Jun; 94(6):2479-84. PubMed ID: 27285924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of dual-energy x-ray absorptiometry for determining in vivo body composition of chickens.
    Swennen Q; Janssens GP; Geers R; Decuypere E; Buyse J
    Poult Sci; 2004 Aug; 83(8):1348-57. PubMed ID: 15339010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the accuracy of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses and primal cuts.
    Kipper M; Marcoux M; Andretta I; Pomar C
    Meat Sci; 2019 Feb; 148():79-87. PubMed ID: 30340164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of dry-cured ham weight loss and prospects of use in a pig breeding program.
    Bonfatti V; Carnier P
    Animal; 2020 Jun; 14(6):1128-1138. PubMed ID: 32014075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Whole-Body and Appendicular Lean Mass from Spine and Hip Dual Energy X-ray Absorptiometry: A Cross-Sectional Study.
    Thackeray M; Orford NR; Kotowicz MA; Mohebbi M; Pasco JA
    Calcif Tissue Int; 2022 Mar; 110(3):341-348. PubMed ID: 34643767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based fully automated body composition analysis of thigh CT: comparison with DXA measurement.
    Yoo HJ; Kim YJ; Hong H; Hong SH; Chae HD; Choi JY
    Eur Radiol; 2022 Nov; 32(11):7601-7611. PubMed ID: 35435440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the E+V video image analysis system as a predictor of pork carcass meat yield.
    McClure EK; Scanga JA; Belk KE; Smith GC
    J Anim Sci; 2003 May; 81(5):1193-201. PubMed ID: 12772846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of dual energy X-ray absorptiometry (DXA) by comparison with chemical analysis of dogs and cats.
    Speakman JR; Booles D; Butterwick R
    Int J Obes Relat Metab Disord; 2001 Mar; 25(3):439-47. PubMed ID: 11319644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body composition analysis of small pigs by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Conway JM
    J Anim Sci; 1998 Sep; 76(9):2392-8. PubMed ID: 9781495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction of percentage of protein in pork carcasses.
    Johnson LP; Reagan JO; Haydon KD; Miller MF
    J Anim Sci; 1990 Dec; 68(12):4176-84. PubMed ID: 2286559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.
    Soladoye OP; López Campos Ó; Aalhus JL; Gariépy C; Shand P; Juárez M
    Meat Sci; 2016 Nov; 121():310-316. PubMed ID: 27395824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Agreement of Lateral Leg Muscle and Bone Composition Using Dual X-ray Absorptiometry.
    Raymond-Pope CJ; Bosch TA; Dengel DR
    J Clin Densitom; 2020; 23(3):451-458. PubMed ID: 31133502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and Validation of DXA-Derived Appendicular Fat-Free Adipose Tissue by a Single Ultrasound Image of the Forearm in Japanese Older Adults.
    Abe T; Loenneke JP; Thiebaud RS; Fujita E; Akamine T; Loftin M
    J Ultrasound Med; 2018 Feb; 37(2):347-353. PubMed ID: 28777477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.