These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37301160)
1. Strong interface coupling boosting hierarchical bismuth embedded carbon hybrid for high-performance capacitive deionization. Li C; Zhang Y; Gong S; Zhang Y; Yan X; Xu H; Cui Z; Qi J; Wang H; Fan X; Peng W; Liu J J Colloid Interface Sci; 2023 Oct; 648():357-364. PubMed ID: 37301160 [TBL] [Abstract][Full Text] [Related]
2. Bismuth Nanoparticle-Embedded Porous Carbon Frameworks as a High-Rate Chloride Storage Electrode for Water Desalination. Shi W; Qian X; Xue M; Que W; Gao X; Zheng D; Liu W; Wu F; Shen J; Cao X; Gao C ACS Appl Mater Interfaces; 2021 May; 13(18):21149-21156. PubMed ID: 33905227 [TBL] [Abstract][Full Text] [Related]
3. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance. Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429 [TBL] [Abstract][Full Text] [Related]
4. Vertically Aligned Bismuthene Nanosheets on MXene for High-Performance Capacitive Deionization. Gong S; Liu H; Zhao F; Zhang Y; Xu H; Li M; Qi J; Wang H; Li C; Peng W; Fan X; Liu J ACS Nano; 2023 Mar; 17(5):4843-4853. PubMed ID: 36867670 [TBL] [Abstract][Full Text] [Related]
5. Tailoring the electrode material and structure of rocking-chair capacitive deionization for high-performance desalination. Wang H; Liu Y; Li Y; Xu X; Lu T; Pan L Mater Horiz; 2024 Oct; 11(21):5209-5219. PubMed ID: 39139040 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Faradic Electrochemical Deionization: System Architectures Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859 [TBL] [Abstract][Full Text] [Related]
7. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays. Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532 [TBL] [Abstract][Full Text] [Related]
8. Na Cao J; Wang Y; Wang L; Yu F; Ma J Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040 [TBL] [Abstract][Full Text] [Related]
9. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. Wang K; Du X; Liu Z; Geng B; Shi W; Liu Y; Dou X; Zhu H; Pan L; Yuan X J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2752-2759. PubMed ID: 34785052 [TBL] [Abstract][Full Text] [Related]
10. Spinel LiMn Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application. Li Y; Qi J; Zhang W; Zhang M; Li J J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Electrosorption Ability of Carbon Nanocages as an Advanced Electrode Material for Capacitive Deionization. Zang X; Xue Y; Ni W; Li C; Hu L; Zhang A; Yang Z; Yan YM ACS Appl Mater Interfaces; 2020 Jan; 12(2):2180-2190. PubMed ID: 31868351 [TBL] [Abstract][Full Text] [Related]
13. Cu-based MOF-derived architecture with Cu/Cu Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915 [TBL] [Abstract][Full Text] [Related]
14. Flexible ultrathin Nitrogen-Doped carbon mediates the surface charge redistribution of a hierarchical tin disulfide nanoflake electrode for efficient capacitive deionization. Gao M; Liang W; Yang Z; Ao T; Chen W J Colloid Interface Sci; 2023 Nov; 650(Pt B):1244-1252. PubMed ID: 37478741 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization. Wang XR; Wang X; Nian HE; Chen T; Zhang L; Song S; Li JH; Wang Y ACS Appl Mater Interfaces; 2022 Nov; 14(47):53150-53164. PubMed ID: 36394639 [TBL] [Abstract][Full Text] [Related]
16. Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal. Wang S; Wang G; Wu T; Li C; Wang Y; Pan X; Zhan F; Zhang Y; Wang S; Qiu J Environ Sci Technol; 2019 Jun; 53(11):6292-6301. PubMed ID: 31094203 [TBL] [Abstract][Full Text] [Related]
17. Selective removal of Cl Min X; Zhu M; He Y; Wang Y; Deng H; Wang S; Jin L; Wang H; Zhang L; Chai L Chemosphere; 2020 Jul; 251():126319. PubMed ID: 32169717 [TBL] [Abstract][Full Text] [Related]
18. Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Wu T; Wang G; Dong Q; Zhan F; Zhang X; Li S; Qiao H; Qiu J Environ Sci Technol; 2017 Aug; 51(16):9244-9251. PubMed ID: 28700208 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning-Guided Prediction of Desalination Capacity and Rate of Porous Carbons for Capacitive Deionization. Wang H; Jiang M; Xu G; Wang C; Xu X; Liu Y; Li Y; Lu T; Yang G; Pan L Small; 2024 Oct; 20(42):e2401214. PubMed ID: 38884200 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe Du J; Xing W; Yu J; Feng J; Tang L; Tang W Water Res; 2023 May; 235():119831. PubMed ID: 36893590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]