BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37301292)

  • 1. Surfactant-based metal-organic frameworks (MOFs) in the preparation of an active biocatalysis.
    Ozyilmaz E; Kocer MB; Caglar O; Yildirim A; Yilmaz M
    J Biotechnol; 2023 Jul; 371-372():10-21. PubMed ID: 37301292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized Ionic Liquids-Modified Metal-Organic Framework Material Boosted the Enzymatic Performance of Lipase.
    Ji L; Zhang W; Zhang Y; Nian B; Hu Y
    Molecules; 2024 May; 29(10):. PubMed ID: 38792242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution.
    Ozyilmaz E; Ascioglu S; Yilmaz M
    Int J Biol Macromol; 2021 Apr; 175():79-86. PubMed ID: 33548316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline-Modified UIO-66 as Nanocarriers to Enhance
    Cheng Y; Lai OM; Tan CP; Panpipat W; Cheong LZ; Shen C
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4146-4155. PubMed ID: 33440928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability.
    Zou B; Zhang L; Xia J; Wang P; Yan Y; Wang X; Adesanya IO
    Appl Biochem Biotechnol; 2020 Sep; 192(1):132-145. PubMed ID: 32323142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.
    Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N
    J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Characterization of Magnetic Metal-Organic Frameworks Functionalized by Ionic Liquid as Supports for Immobilization of Pancreatic Lipase.
    Li M; Dai X; Li A; Qi Q; Wang W; Cao J; Jiang Z; Liu R; Suo H; Xu L
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane.
    Zare A; Bordbar AK; Razmjou A; Jafarian F
    J Biotechnol; 2019 Jan; 289():55-63. PubMed ID: 30458213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally Friendly Enzyme Immobilization on MOF Materials.
    Gascón Pérez V; Sánchez-Sánchez M
    Methods Mol Biol; 2020; 2100():271-296. PubMed ID: 31939130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.
    Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV
    Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa.
    Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): a new eco-friendly support.
    Cabrera-Padilla RY; Lisboa MC; Fricks AT; Franceschi E; Lima AS; Silva DP; Soares CM
    J Ind Microbiol Biotechnol; 2012 Feb; 39(2):289-98. PubMed ID: 21870100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar.
    Cea M; González ME; Abarzúa M; Navia R
    J Environ Manage; 2019 Jul; 242():171-177. PubMed ID: 31035179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis.
    Li Q; Chen Y; Bai S; Shao X; Jiang L; Li Q
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110812. PubMed ID: 31981814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling.
    Li C; Jiang S; Zhao X; Liang H
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28125003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient resolution of 4-chlormandelic acid enantiomers using lipase@UiO-67(Zr) zirconium-organic frameworks in organic solvent.
    Zhong LJ; Jiang B; Tang K
    Chirality; 2023 May; 35(5):323-333. PubMed ID: 36739869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin.
    Zhang Y; Ma G; Wang S; Nian B; Hu Y
    J Sci Food Agric; 2023 Dec; 103(15):7849-7861. PubMed ID: 37467367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.
    Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA
    Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Triton X-100 and PEG on the Catalytic Properties and Thermal Stability of Lipase from
    Perna RF; Tiosso PC; Sgobi LM; Vieira AMS; Vieira MF; Tardioli PW; Soares CMF; Zanin GM
    Open Biochem J; 2017; 11():66-76. PubMed ID: 29290831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.