These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37301359)

  • 1. Rank-ordering of known enzymes as starting points for re-engineering novel substrate activity using a convolutional neural network.
    Upadhyay V; Boorla VS; Maranas CD
    Metab Eng; 2023 Jul; 78():171-182. PubMed ID: 37301359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering specialized metabolic pathways--is there a room for enzyme improvements?
    Bar-Even A; Salah Tawfik D
    Curr Opin Biotechnol; 2013 Apr; 24(2):310-9. PubMed ID: 23102865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition.
    Chen L; Feng KY; Cai YD; Chou KC; Li HP
    BMC Bioinformatics; 2010 May; 11():293. PubMed ID: 20513238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network design and analysis for multi-enzyme biocatalysis.
    Blaß LK; Weyler C; Heinzle E
    BMC Bioinformatics; 2017 Aug; 18(1):366. PubMed ID: 28797226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions.
    Watanabe N; Yamamoto M; Murata M; Vavricka CJ; Ogino C; Kondo A; Araki M
    J Phys Chem B; 2022 Sep; 126(36):6762-6770. PubMed ID: 36053051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in engineering proteins for biocatalysis.
    Li Y; Cirino PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning approach to evaluate the feasibility of enzymatic reactions generated by retrobiosynthesis.
    Kim Y; Ryu JY; Kim HU; Jang WD; Lee SY
    Biotechnol J; 2021 May; 16(5):e2000605. PubMed ID: 33386776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites.
    Hadadi N; MohammadiPeyhani H; Miskovic L; Seijo M; Hatzimanikatis V
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7298-7307. PubMed ID: 30910961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering biosynthetic enzymes for industrial natural product synthesis.
    Galanie S; Entwistle D; Lalonde J
    Nat Prod Rep; 2020 Aug; 37(8):1122-1143. PubMed ID: 32364202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing biocatalysis through enzyme, cellular, and platform engineering.
    Cirino PC; Sun L
    Biotechnol Prog; 2008; 24(3):515-9. PubMed ID: 18335955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic metabolism: metabolic engineering meets enzyme design.
    Erb TJ; Jones PR; Bar-Even A
    Curr Opin Chem Biol; 2017 Apr; 37():56-62. PubMed ID: 28152442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting novel substrates for enzymes with minimal experimental effort with active learning.
    Pertusi DA; Moura ME; Jeffryes JG; Prabhu S; Walters Biggs B; Tyo KEJ
    Metab Eng; 2017 Nov; 44():171-181. PubMed ID: 29030274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory augmented recurrent neural networks for de-novo drug design.
    Suresh N; Chinnakonda Ashok Kumar N; Subramanian S; Srinivasa G
    PLoS One; 2022; 17(6):e0269461. PubMed ID: 35737661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolite and reaction inference based on enzyme specificities.
    de Groot MJ; van Berlo RJ; van Winden WA; Verheijen PJ; Reinders MJ; de Ridder D
    Bioinformatics; 2009 Nov; 25(22):2975-82. PubMed ID: 19696044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Few-Shot Learning Neural Network for Predicting Carbohydrate-Active Enzyme Affinity Toward Fructo-Oligosaccharides.
    Liu S; Kou Y; Chen L
    J Comput Biol; 2021 Dec; 28(12):1208-1218. PubMed ID: 34898254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers.
    Zhang Y; Chen JH; Lin Y; Chan S; Zhou J; Chow D; Chang P; Kwong T; Yeh DC; Wang X; Parajuli R; Mehta RS; Wang M; Su MY
    Eur Radiol; 2021 Apr; 31(4):2559-2567. PubMed ID: 33001309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering enzyme microenvironments for enhanced biocatalysis.
    Lancaster L; Abdallah W; Banta S; Wheeldon I
    Chem Soc Rev; 2018 Jul; 47(14):5177-5186. PubMed ID: 29796541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.