These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37301875)

  • 1. Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics.
    Li L; Wang T; Ning Z; Zhang X; Butcher J; Serrana JM; Simopoulos CMA; Mayne J; Stintzi A; Mack DR; Liu YY; Figeys D
    Nat Commun; 2023 Jun; 14(1):3428. PubMed ID: 37301875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes.
    Blakeley-Ruiz JA; Erickson AR; Cantarel BL; Xiong W; Adams R; Jansson JK; Fraser CM; Hettich RL
    Microbiome; 2019 Feb; 7(1):18. PubMed ID: 30744677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.
    Xiong W; Brown CT; Morowitz MJ; Banfield JF; Hettich RL
    Microbiome; 2017 Jul; 5(1):72. PubMed ID: 28693612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Landscape and Perspectives of the Human Gut Metaproteomics.
    Sun Z; Ning Z; Figeys D
    Mol Cell Proteomics; 2024 May; 23(5):100763. PubMed ID: 38608842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering functional redundancy in the human microbiome.
    Tian L; Wang XW; Wu AK; Fan Y; Friedman J; Dahlin A; Waldor MK; Weinstock GM; Weiss ST; Liu YY
    Nat Commun; 2020 Dec; 11(1):6217. PubMed ID: 33277504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles.
    Brown CT; Xiong W; Olm MR; Thomas BC; Baker R; Firek B; Morowitz MJ; Hettich RL; Banfield JF
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MetaProClust-MS1: an MS1 Profiling Approach for Large-Scale Microbiome Screening.
    Simopoulos CMA; Ning Z; Li L; Khamis MM; Zhang X; Lavallée-Adam M; Figeys D
    mSystems; 2022 Aug; 7(4):e0038122. PubMed ID: 35950762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota.
    Zhao J; Yang Y; Xu H; Zheng J; Shen C; Chen T; Wang T; Wang B; Yi J; Zhao D; Wu E; Qin Q; Xia L; Qiao L
    NPJ Biofilms Microbiomes; 2023 Jan; 9(1):4. PubMed ID: 36693863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic.
    Liu CW; Chi L; Tu P; Xue J; Ru H; Lu K
    J Proteome Res; 2019 Mar; 18(3):970-981. PubMed ID: 30545218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Metaproteomics Approach for the Study of Human Microbiomes.
    Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D
    Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical modeling of gut microbiota for personalized health status monitoring.
    Zhu J; Xie H; Yang Z; Chen J; Yin J; Tian P; Wang H; Zhao J; Zhang H; Lu W; Chen W
    Microbiome; 2023 Aug; 11(1):184. PubMed ID: 37596617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.
    Xiong W; Abraham PE; Li Z; Pan C; Hettich RL
    Proteomics; 2015 Oct; 15(20):3424-38. PubMed ID: 25914197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs.
    Li L; Ning Z; Zhang X; Mayne J; Cheng K; Stintzi A; Figeys D
    Microbiome; 2020 Mar; 8(1):33. PubMed ID: 32160905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface.
    Li L; Figeys D
    Mol Cell Proteomics; 2020 Sep; 19(9):1409-1417. PubMed ID: 32581040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the impact of protein extraction methods for human gut metaproteomics.
    Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D
    J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metaproteomics Study of the Gut Microbiome.
    Lai LA; Tong Z; Chen R; Pan S
    Methods Mol Biol; 2019; 1871():123-132. PubMed ID: 30276736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Evaluation of Metaproteomics and 16S rRNA Amplicon Sequencing Techniques for Study of Gut Microbiota Establishment in Infants with Cystic Fibrosis.
    Saralegui C; García-Durán C; Romeu E; Hernáez-Sánchez ML; Maruri A; Bastón-Paz N; Lamas A; Vicente S; Pérez-Ruiz E; Delgado I; Luna-Paredes C; Caballero JD; Zamora J; Monteoliva L; Gil C; Del Campo R
    Microbiol Spectr; 2022 Dec; 10(6):e0146622. PubMed ID: 36255300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human gut microbiome and its dysfunctions through the meta-omics prism.
    Mondot S; Lepage P
    Ann N Y Acad Sci; 2016 May; 1372(1):9-19. PubMed ID: 26945826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential and active functions in the gut microbiota of a healthy human cohort.
    Tanca A; Abbondio M; Palomba A; Fraumene C; Manghina V; Cucca F; Fiorillo E; Uzzau S
    Microbiome; 2017 Jul; 5(1):79. PubMed ID: 28709472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Gut Microbiome: Function Matters.
    Heintz-Buschart A; Wilmes P
    Trends Microbiol; 2018 Jul; 26(7):563-574. PubMed ID: 29173869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.