These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37301926)

  • 1. Vection underwater illustrates the limitations of neutral buoyancy as a microgravity analog.
    Bury NA; Jenkin M; Allison RS; Herpers R; Harris LR
    NPJ Microgravity; 2023 Jun; 9(1):42. PubMed ID: 37301926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception of smooth and perturbed vection in short-duration microgravity.
    Allison RS; Zacher JE; Kirollos R; Guterman PS; Palmisano S
    Exp Brain Res; 2012 Dec; 223(4):479-87. PubMed ID: 23111427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing visual cues to orientation: suggestions for space travelers and the elderly.
    Harris LR; Jenkin M; Dyde RT; Jenkin H
    Prog Brain Res; 2011; 191():133-42. PubMed ID: 21741549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Taillebot V; Vercher JL; Weiss P; Bringoux L
    Neuroscience; 2016 Jul; 327():125-35. PubMed ID: 27095713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Role of Somatosensation in Postural Control Following Spaceflight: Vestibularly Deficient Astronauts Are Not Able to Maintain Upright Stance During Compromised Somatosensation.
    Ozdemir RA; Goel R; Reschke MF; Wood SJ; Paloski WH
    Front Physiol; 2018; 9():1680. PubMed ID: 30538640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of long-term exposure to microgravity on the perception of upright.
    Harris LR; Jenkin M; Jenkin H; Zacher JE; Dyde RT
    NPJ Microgravity; 2017; 3():3. PubMed ID: 28649625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between selected orientation rest frame, circular vection and space motion sickness.
    Harm DL; Parker DE; Reschke MF; Skinner NC
    Brain Res Bull; 1998 Nov; 47(5):497-501. PubMed ID: 10052580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues.
    Dixon JB; Clark TK
    J Neurophysiol; 2020 Jan; 123(1):209-223. PubMed ID: 31747329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance and Size Perception in Astronauts during Long-Duration Spaceflight.
    Clément G; Skinner A; Lathan C
    Life (Basel); 2013 Dec; 3(4):524-37. PubMed ID: 25369884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between vection and motion perception in depth.
    Seya Y; Shinoda H
    Atten Percept Psychophys; 2018 Nov; 80(8):2008-2021. PubMed ID: 30027334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caloric vestibular stimulation induces vestibular circular vection even with a conflicting visual display presented in a virtual reality headset.
    Kirollos R; Herdman CM
    Iperception; 2023; 14(2):20416695231168093. PubMed ID: 37113619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of exposure to microgravity and reconditioning of the lumbar multifidus and anterolateral abdominal muscles: implications for people with LBP.
    Hides JA; Lambrecht G; Sexton CT; Pruett C; Petersen N; Jaekel P; Rosenberger A; Weerts G
    Spine J; 2021 Mar; 21(3):477-491. PubMed ID: 32966906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual rotation axis and body position relative to the gravitational direction: Effects on circular vection.
    Tanahashi S; Ujike H; Ukai K
    Iperception; 2012; 3(10):804-19. PubMed ID: 23483823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When gravity is not where it should be: How perceived orientation affects visual self-motion processing.
    McManus M; Harris LR
    PLoS One; 2021; 16(1):e0243381. PubMed ID: 33406125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual upright: the relative effectiveness of dynamic and static images under different gravity States.
    Jenkin MR; Dyde RT; Jenkin HL; Zacher JE; Harris LR
    Seeing Perceiving; 2011; 24(1):53-64. PubMed ID: 21406155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of alpha waves in sensorimotor cortical networks during self-motion perception evoked by different visual-vestibular conflicts.
    Harquel S; Guerraz M; Barraud PA; Cian C
    J Neurophysiol; 2020 Jan; 123(1):346-355. PubMed ID: 31774351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of auditory and visual cues on the perception of vection.
    Keshavarz B; Hettinger LJ; Vena D; Campos JL
    Exp Brain Res; 2014 Mar; 232(3):827-36. PubMed ID: 24306440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravity and perceptual stability during translational head movement on earth and in microgravity.
    Jaekl P; Zikovitz DC; Jenkin MR; Jenkin HL; Zacher JE; Harris LR
    Acta Astronaut; 2005; 56(9-12):1033-40. PubMed ID: 15835061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Oculus Rift: a cost-effective tool for studying visual-vestibular interactions in self-motion perception.
    Kim J; Chung CY; Nakamura S; Palmisano S; Khuu SK
    Front Psychol; 2015; 6():248. PubMed ID: 25821438
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.