These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 37301964)

  • 1. The emerging studies on mesenchymal progenitors in the long bone.
    Shen F; Huang X; He G; Shi Y
    Cell Biosci; 2023 Jun; 13(1):105. PubMed ID: 37301964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal Stem Cells for Bone Development and Repair: Diversity Matters.
    Matsushita Y; Ono W; Ono N
    Curr Osteoporos Rep; 2020 Jun; 18(3):189-198. PubMed ID: 32172443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal stem cells: insights into maintaining and regenerating the skeleton.
    Serowoky MA; Arata CE; Crump JG; Mariani FV
    Development; 2020 Mar; 147(5):. PubMed ID: 32161063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth plate skeletal stem cells and their transition from cartilage to bone.
    Matsushita Y; Ono W; Ono N
    Bone; 2020 Jul; 136():115359. PubMed ID: 32276155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone.
    He X; Bougioukli S; Ortega B; Arevalo E; Lieberman JR; McMahon AP
    Bone; 2017 Oct; 103():12-19. PubMed ID: 28627474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into skeletal stem cells.
    Li Q; Xu R; Lei K; Yuan Q
    Bone Res; 2022 Oct; 10(1):61. PubMed ID: 36261411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal Progenitors Derived from Different Locations in Long Bones Display Diverse Characteristics.
    Lu W; Gao B; Fan J; Cheng P; Hu Y; Jie Q; Luo Z; Yang L
    Stem Cells Int; 2019; 2019():5037578. PubMed ID: 31089329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.
    Wang W; Strecker S; Liu Y; Wang L; Assanah F; Smith S; Maye P
    Bone; 2015 Feb; 71():76-88. PubMed ID: 25464947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal stem cells: a game changer of skeletal biology and regenerative medicine?
    Zhu Q; Ding L; Yue R
    Life Med; 2022 Dec; 1(3):294-306. PubMed ID: 36811113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nestin-GFP transgene labels skeletal progenitors in the periosteum.
    Tournaire G; Stegen S; Giacomini G; Stockmans I; Moermans K; Carmeliet G; van Gastel N
    Bone; 2020 Apr; 133():115259. PubMed ID: 32036051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gli1 identifies osteogenic progenitors for bone formation and fracture repair.
    Shi Y; He G; Lee WC; McKenzie JA; Silva MJ; Long F
    Nat Commun; 2017 Dec; 8(1):2043. PubMed ID: 29230039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for defining mesenchymal cell types associated with murine periosteal and endosteal bone.
    Nookaew I; Xiong J; Onal M; Bustamante-Gomez C; Wanchai V; Fu Q; Kim HN; Almeida M; O'Brien CA
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma.
    Otani S; Ohnuma M; Ito K; Matsushita Y
    Front Endocrinol (Lausanne); 2023; 14():1181204. PubMed ID: 37229448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro.
    Wu YX; Jing XZ; Sun Y; Ye YP; Guo JC; Huang JM; Xiang W; Zhang JM; Guo FJ
    Mol Med Rep; 2017 Dec; 16(6):8019-8028. PubMed ID: 28983600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing the skeletal progenitor transition during postnatal bone formation.
    Shu HS; Liu YL; Tang XT; Zhang XS; Zhou B; Zou W; Zhou BO
    Cell Stem Cell; 2021 Dec; 28(12):2122-2136.e3. PubMed ID: 34499868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice.
    Youngstrom DW; Dishowitz MI; Bales CB; Carr E; Mutyaba PL; Kozloff KM; Shitaye H; Hankenson KD; Loomes KM
    Bone; 2016 Oct; 91():64-74. PubMed ID: 27416809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem and progenitor cells in skeletal development.
    Ono N; Balani DH; Kronenberg HM
    Curr Top Dev Biol; 2019; 133():1-24. PubMed ID: 30902249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Niches for Skeletal Stem Cells of Mesenchymal Origin.
    Kurenkova AD; Medvedeva EV; Newton PT; Chagin AS
    Front Cell Dev Biol; 2020; 8():592. PubMed ID: 32754592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation.
    Li X; Yang S; Yuan G; Jing D; Qin L; Zhao H; Yang S
    Bone Res; 2022 Jun; 10(1):46. PubMed ID: 35739091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.