These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37302299)
1. Simulation of sand particles detection inside a pipeline by photon radiography. Jamshidi V Appl Radiat Isot; 2023 Sep; 199():110876. PubMed ID: 37302299 [TBL] [Abstract][Full Text] [Related]
2. Photon backscatter radiography application for the simulation of corrosion detection inside a pipeline: A novel proposal for 360° corrosion consideration in the pipelines. Jamshidi V; Davarnejad R Appl Radiat Isot; 2021 Oct; 176():109844. PubMed ID: 34216882 [TBL] [Abstract][Full Text] [Related]
3. Simulation of corrosion detection inside wellbore by X-ray backscatter radiography. Jamshidi V; Davarnejad R Appl Radiat Isot; 2019 Mar; 145():116-119. PubMed ID: 30594855 [TBL] [Abstract][Full Text] [Related]
4. Simulation of defect detection for the buried petroleum pipe by the X-ray backscatter imaging. Li H; He L; Li H; Li D Appl Radiat Isot; 2024 May; 207():111278. PubMed ID: 38442643 [TBL] [Abstract][Full Text] [Related]
5. Pipeline Inspection Gauge's Velocity Simulation Based on Pressure Differential Using Artificial Neural Networks. de Araújo RP; de Freitas VCG; de Lima GF; Salazar AO; Neto ADD; Maitelli AL Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30216994 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation of sulfur particle agglomeration at bends of high sulfur natural gas gathering pipelines based on Euler-PBM coupling. Huang J; Liu G; Fan S; Li B; Li C Sci Rep; 2024 Aug; 14(1):19190. PubMed ID: 39160290 [TBL] [Abstract][Full Text] [Related]
7. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array. Sampath S; Bhattacharya B; Aryan P; Sohn H Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434253 [TBL] [Abstract][Full Text] [Related]
8. Analysis of domino effect in pipelines. Ramírez-Camacho JG; Pastor E; Casal J; Amaya-Gómez R; Muñoz-Giraldo F J Hazard Mater; 2015 Nov; 298():210-20. PubMed ID: 26068047 [TBL] [Abstract][Full Text] [Related]
9. Research on Pipeline Stress Detection Method Based on Double Magnetic Coupling Technology. Wang G; Xia Q; Yan H; Bei S; Zhang H; Geng H; Zhao Y Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409503 [TBL] [Abstract][Full Text] [Related]
10. Experimental Investigation of the Flow Characteristics in Crude Oil Containing Sand and Gas Flowing Along Vertical Pipelines. Zhang D; Liu S; Zhang J; Hou LT; Xu JY ACS Omega; 2020 Dec; 5(48):31262-31271. PubMed ID: 33324836 [TBL] [Abstract][Full Text] [Related]
11. Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning. Freitas VCG; Araujo VG; Crisóstomo DCC; Lima GF; Neto ADD; Salazar AO Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501866 [TBL] [Abstract][Full Text] [Related]
12. Development of a Wheel-Type In-Pipe Robot Using Continuously Variable Transmission Mechanisms for Pipeline Inspection. Park J; Luong T; Moon H Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392159 [TBL] [Abstract][Full Text] [Related]
13. Optimization for Pipeline Corrosion Sensor Placement in Oil-Water Two-Phase Flow Using CFD Simulations and Genetic Algorithm. Shi S; Jiang B; Ludwig S; Xu L; Wang H; Huang Y; Yan F Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687835 [TBL] [Abstract][Full Text] [Related]
14. Numerical Simulation Study on Flow Laws and Heat Transfer of Gas Hydrate in the Spiral Flow Pipeline with Long Twisted Band. Rao Y; Li L; Wang S; Zhao S; Zhou S Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33924044 [TBL] [Abstract][Full Text] [Related]
15. Application of Terahertz Nondestructive Testing Technology in the Detection of Polyethylene Pipe Defects. Nie H; Hao F; Wang L; Guo Q; Chen H; Ren J; Wang K; Dang W; Liang X; Ma W ACS Omega; 2023 Aug; 8(30):27323-27332. PubMed ID: 37546631 [TBL] [Abstract][Full Text] [Related]
16. Enhanced oil removal from oily sand by injecting micro-macrobubbles in swirl elution. Wang N; Lu H; Xu X; Liu Y; Li Y; Yuan F; Yang Q J Environ Manage; 2022 Aug; 316():115175. PubMed ID: 35658268 [TBL] [Abstract][Full Text] [Related]
17. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection. Feng Q; Li R; Nie B; Liu S; Zhao L; Zhang H Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28036016 [TBL] [Abstract][Full Text] [Related]
18. Pipeline In-Line Inspection Method, Instrumentation and Data Management. Ma Q; Tian G; Zeng Y; Li R; Song H; Wang Z; Gao B; Zeng K Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205033 [TBL] [Abstract][Full Text] [Related]
19. Environmental risk of oil pipeline accidents. Lu H; Xi D; Qin G Sci Total Environ; 2023 May; 874():162386. PubMed ID: 36863588 [TBL] [Abstract][Full Text] [Related]
20. Research on Internal Shape Anomaly Inspection Technology for Pipeline Girth Welds Based on Alternating Excitation Detection. Li R; Chen P; Huang J; Fu K Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]