These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37302334)

  • 21. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of nitrogen addition on the performance of microbial fuel cell anodes.
    Saito T; Mehanna M; Wang X; Cusick RD; Feng Y; Hickner MA; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):395-8. PubMed ID: 20889061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Electricity generation from lactate using microbial fuel cell and the distribution characteristics of anode microbial community].
    Liu R; Zhao Y; Lu S; Huang Q
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):744-52. PubMed ID: 22934355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing microbial fuel cell performance through microbial immobilization.
    Mersinkova Y; Yemendzhiev H
    Z Naturforsch C J Biosci; 2024 May; 79(5-6):149-153. PubMed ID: 38869146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimetal-organic framework-derived porous CoFe
    Ren T; Liu Y; Shi C; Li C
    J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.
    Zhu X; Tokash JC; Hong Y; Logan BE
    Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells.
    Dong J; Wu Y; Wang C; Lu H; Li Y
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2165-2174. PubMed ID: 32642906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective strategies for anode surface modification for power harvesting and industrial wastewater treatment using microbial fuel cells.
    Mohamed HO; Sayed ET; Cho H; Park M; Obaid M; Kim HY; Barakat NAM
    J Environ Manage; 2018 Jan; 206():228-235. PubMed ID: 29073581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces.
    Dolch K; Wuske J; Gescher J
    J Microbiol Biotechnol; 2016 Mar; 26(3):511-20. PubMed ID: 26699756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing microbial fuel cell performance using anode modified with Fe
    Zheng X; Hou S; Amanze C; Zeng Z; Zeng W
    Bioprocess Biosyst Eng; 2022 May; 45(5):877-890. PubMed ID: 35166901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis.
    Li C; Zhang L; Ding L; Ren H; Cui H
    Biosens Bioelectron; 2011 Jun; 26(10):4169-76. PubMed ID: 21549585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDA-Fe
    Zhang C; Zeng X; Xu X; Nie W; Dubey BK; Ding W
    Chemosphere; 2024 May; 355():141764. PubMed ID: 38521108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.
    Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H
    J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing extracellular electron transfer through selective enrichment of Geobacter with Fe@CN-modified carbon-based anode in microbial fuel cells.
    Cheng XL; Xu Q; Yang QW; Tian RR; Li B; Yan S; Zhang XY; Zhou J; Yong XY
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28640-28651. PubMed ID: 36396764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F
    Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.