These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37302669)

  • 1. Investigation on the influence of design features on the performance of dry powder inhalers: Spiral channel, mouthpiece dimension, and gas inlet.
    Ye Y; Fan Z; Ma Y; Zhu J
    Int J Pharm; 2023 Jul; 642():123116. PubMed ID: 37302669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure.
    Leung CMS; Tong Z; Zhou QT; Chan JGY; Tang P; Sun S; Yang R; Chan HK
    AAPS J; 2016 Sep; 18(5):1159-1167. PubMed ID: 27161214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length.
    Coates MS; Fletcher DF; Chan HK; Raper JA
    J Pharm Sci; 2004 Nov; 93(11):2863-76. PubMed ID: 15389665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiral mouthpiece design in a dry powder inhaler to improve aerosolization.
    Lee HJ; Kwon IH; Lee HG; Kwon YB; Woo HM; Cho SM; Choi YW; Chon J; Kim K; Kim DW; Park CW
    Int J Pharm; 2018 Dec; 553(1-2):149-156. PubMed ID: 30336185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®).
    Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK
    AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler.
    Coates MS; Chan HK; Fletcher DF; Chiou H
    Pharm Res; 2007 Aug; 24(8):1450-6. PubMed ID: 17404813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of grid design on the performance of 3D-printed dry powder inhalers.
    Ye Y; Ma Y; Fan Z; Zhu J
    Int J Pharm; 2022 Nov; 627():122230. PubMed ID: 36162608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size.
    Coates MS; Chan HK; Fletcher DF; Raper JA
    J Pharm Sci; 2006 Jun; 95(6):1382-92. PubMed ID: 16625656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of dry powder aerosolization mechanisms in different channel designs.
    Chen L; Heng RL; Delele MA; Cai J; Du DZ; Opara UL
    Int J Pharm; 2013 Nov; 457(1):143-9. PubMed ID: 24055441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations.
    Behara SR; Longest PW; Farkas DR; Hindle M
    J Pharm Sci; 2014 Feb; 103(2):465-77. PubMed ID: 24307605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CFD-DEM investigation of powder transport and aerosolization in ELLIPTA® dry powder inhaler.
    Sulaiman M; Liu X; Sundaresan S
    Powder Technol; 2022 Sep; 409():. PubMed ID: 36348745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.
    Farkas D; Bonasera S; Bass K; Hindle M; Longest PW
    Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling.
    Longest W; Farkas D
    AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in the computational simulation of dry powder inhalers.
    Capecelatro J; Longest W; Boerman C; Sulaiman M; Sundaresan S
    Adv Drug Deliv Rev; 2022 Sep; 188():114461. PubMed ID: 35868587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance.
    Suwandecha T; Wongpoowarak W; Srichana T
    Pharm Dev Technol; 2016; 21(1):54-60. PubMed ID: 25265389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dose loading conditions and device geometry on the transport and aerosolization in dry powder inhalers: A simulation study.
    Sulaiman M; Liu X; Sundaresan S
    Int J Pharm; 2021 Dec; 610():121219. PubMed ID: 34699949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.