These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37302669)
1. Investigation on the influence of design features on the performance of dry powder inhalers: Spiral channel, mouthpiece dimension, and gas inlet. Ye Y; Fan Z; Ma Y; Zhu J Int J Pharm; 2023 Jul; 642():123116. PubMed ID: 37302669 [TBL] [Abstract][Full Text] [Related]
2. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations. Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474 [TBL] [Abstract][Full Text] [Related]
3. Spiral mouthpiece design in a dry powder inhaler to improve aerosolization. Lee HJ; Kwon IH; Lee HG; Kwon YB; Woo HM; Cho SM; Choi YW; Chon J; Kim K; Kim DW; Park CW Int J Pharm; 2018 Dec; 553(1-2):149-156. PubMed ID: 30336185 [TBL] [Abstract][Full Text] [Related]
4. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. Bass K; Farkas D; Longest W AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991 [TBL] [Abstract][Full Text] [Related]
5. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®). Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure. Leung CMS; Tong Z; Zhou QT; Chan JGY; Tang P; Sun S; Yang R; Chan HK AAPS J; 2016 Sep; 18(5):1159-1167. PubMed ID: 27161214 [TBL] [Abstract][Full Text] [Related]
7. The effects of grid design on the performance of 3D-printed dry powder inhalers. Ye Y; Ma Y; Fan Z; Zhu J Int J Pharm; 2022 Nov; 627():122230. PubMed ID: 36162608 [TBL] [Abstract][Full Text] [Related]
8. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
9. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface. Farkas D; Bonasera S; Bass K; Hindle M; Longest PW Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295 [TBL] [Abstract][Full Text] [Related]
10. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. Longest W; Farkas D AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133 [TBL] [Abstract][Full Text] [Related]
11. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. Coates MS; Fletcher DF; Chan HK; Raper JA J Pharm Sci; 2004 Nov; 93(11):2863-76. PubMed ID: 15389665 [TBL] [Abstract][Full Text] [Related]
12. Recent developments in the computational simulation of dry powder inhalers. Capecelatro J; Longest W; Boerman C; Sulaiman M; Sundaresan S Adv Drug Deliv Rev; 2022 Sep; 188():114461. PubMed ID: 35868587 [TBL] [Abstract][Full Text] [Related]
13. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648 [TBL] [Abstract][Full Text] [Related]
15. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler. de Boer AH; Hagedoorn P; Woolhouse R; Wynn E J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443 [TBL] [Abstract][Full Text] [Related]
16. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size. Coates MS; Chan HK; Fletcher DF; Raper JA J Pharm Sci; 2006 Jun; 95(6):1382-92. PubMed ID: 16625656 [TBL] [Abstract][Full Text] [Related]
18. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children. Bass K; Longest W AAPS PharmSciTech; 2020 May; 21(5):157. PubMed ID: 32451773 [TBL] [Abstract][Full Text] [Related]
19. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations. Behara SR; Longest PW; Farkas DR; Hindle M J Pharm Sci; 2014 Feb; 103(2):465-77. PubMed ID: 24307605 [TBL] [Abstract][Full Text] [Related]
20. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study. Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]