BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37302762)

  • 1. Epigenomic analysis of Alzheimer's disease brains reveals diminished CTCF binding on genes involved in synaptic organization.
    Patel PJ; Ren Y; Yan Z
    Neurobiol Dis; 2023 Aug; 184():106192. PubMed ID: 37302762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Dynamic Chromatin Architecture of the Regenerating Liver.
    Wang AW; Wang YJ; Zahm AM; Morgan AR; Wangensteen KJ; Kaestner KH
    Cell Mol Gastroenterol Hepatol; 2020; 9(1):121-143. PubMed ID: 31629814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation.
    Fang C; Wang Z; Han C; Safgren SL; Helmin KA; Adelman ER; Serafin V; Basso G; Eagen KP; Gaspar-Maia A; Figueroa ME; Singer BD; Ratan A; Ntziachristos P; Zang C
    Genome Biol; 2020 Sep; 21(1):247. PubMed ID: 32933554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8
    Quon S; Yu B; Russ BE; Tsyganov K; Nguyen H; Toma C; Heeg M; Hocker JD; Milner JJ; Crotty S; Pipkin ME; Turner SJ; Goldrath AW
    Immunity; 2023 May; 56(5):959-978.e10. PubMed ID: 37040762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress.
    Lehman BJ; Lopez-Diaz FJ; Santisakultarm TP; Fang L; Shokhirev MN; Diffenderfer KE; Manor U; Emerson BM
    PLoS Genet; 2021 Jan; 17(1):e1009277. PubMed ID: 33411704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation.
    Tang X; Zeng P; Liu K; Qing L; Sun Y; Liu X; Lu L; Wei C; Wang J; Jiang S; Sun J; Chang W; Yu H; Chen H; Zhou J; Xu C; Fan L; Miao YL; Ding J
    Nat Commun; 2024 Apr; 15(1):2813. PubMed ID: 38561336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CTCF as a regulator of alternative splicing: new tricks for an old player.
    Alharbi AB; Schmitz U; Bailey CG; Rasko JEJ
    Nucleic Acids Res; 2021 Aug; 49(14):7825-7838. PubMed ID: 34181707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CGGBP1-dependent CTCF-binding sites restrict ectopic transcription.
    Patel D; Patel M; Datta S; Singh U
    Cell Cycle; 2021 Nov; 20(22):2387-2401. PubMed ID: 34585631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic drivers of chromatin organization into compartments.
    Harris HL; Rowley MJ
    Curr Opin Genet Dev; 2024 Jun; 86():102193. PubMed ID: 38626581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ctcf is required for renin expression and maintenance of the structural integrity of the kidney.
    Martinez MF; Martini AG; Sequeira-Lopez MLS; Gomez RA
    Clin Sci (Lond); 2020 Jul; 134(13):1763-1774. PubMed ID: 32619009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease.
    Nativio R; Donahue G; Berson A; Lan Y; Amlie-Wolf A; Tuzer F; Toledo JB; Gosai SJ; Gregory BD; Torres C; Trojanowski JQ; Wang LS; Johnson FB; Bonini NM; Berger SL
    Nat Neurosci; 2018 Apr; 21(4):497-505. PubMed ID: 29507413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine Triggers CTCF-Dependent Morphological and Genomic Remodeling of Astrocytes.
    Galloway A; Adeluyi A; O'Donovan B; Fisher ML; Rao CN; Critchfield P; Sajish M; Turner JR; Ortinski PI
    J Neurosci; 2018 May; 38(21):4846-4858. PubMed ID: 29712779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide methylomic regulation of multiscale gene networks in Alzheimer's disease.
    Wang E; Wang M; Guo L; Fullard JF; Micallef C; Bendl J; Song WM; Ming C; Huang Y; Li Y; Yu K; Peng J; Bennett DA; De Jager PL; Roussos P; Haroutunian V; Zhang B
    Alzheimers Dement; 2023 Aug; 19(8):3472-3495. PubMed ID: 36811307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen exposure reshapes chromatin architecture in central memory CD8
    Zhu S; Liu J; Patel V; Zhao X; Peng W; Xue HH
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2313476120. PubMed ID: 38085779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenomics of Alzheimer's disease.
    Bennett DA; Yu L; Yang J; Srivastava GP; Aubin C; De Jager PL
    Transl Res; 2015 Jan; 165(1):200-20. PubMed ID: 24905038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic dysregulation in Alzheimer's disease peripheral immunity.
    Ramakrishnan A; Piehl N; Simonton B; Parikh M; Zhang Z; Teregulova V; van Olst L; Gate D
    Neuron; 2024 Apr; 112(8):1235-1248.e5. PubMed ID: 38340719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTCF regulates global chromatin accessibility and transcription during rod photoreceptor development.
    Chen D; Keremane S; Wang S; Lei EP
    bioRxiv; 2024 May; ():. PubMed ID: 38853900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin Changes the Spatial Organization of the Genome around Active Promoters.
    Stefanova ME; Ing-Simmons E; Stefanov S; Flyamer I; Dorado Garcia H; Schöpflin R; Henssen AG; Vaquerizas JM; Mundlos S
    Cells; 2023 Aug; 12(15):. PubMed ID: 37566080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuum of zinc finger transcription factor retention on native chromatin underlies dynamic genome organization.
    Hu S; Liu Y; Zhang Q; Bai J; Xu C
    Mol Syst Biol; 2024 May; ():. PubMed ID: 38745107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-nucleus RNA velocity reveals critical synaptic and cell-cycle dysregulations in neuropathologically confirmed Alzheimer's disease.
    Adewale Q; Khan AF; Bennett DA; Iturria-Medina Y
    Sci Rep; 2024 Mar; 14(1):7269. PubMed ID: 38538816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.