These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37303830)

  • 21. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.
    He D; Fan B; Zhao H; Lu X; Yang M; Liu Y; Bai J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2948-2958. PubMed ID: 28056505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices.
    Yamada T; Makiomoto N; Sekiguchi A; Yamamoto Y; Kobashi K; Hayamizu Y; Yomogida Y; Tanaka H; Shima H; Akinaga H; Futaba DN; Hata K
    Nano Lett; 2012 Sep; 12(9):4540-5. PubMed ID: 22889469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.
    Zhang G; Jiang S; Yao W; Liu C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31202-31211. PubMed ID: 27791353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using confined self-adjusting carbon nanotube arrays as high-sensitivity displacement sensing element.
    Lee JI; Eun Y; Choi J; Kwon DS; Kim J
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10181-7. PubMed ID: 24914449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.
    Yilmazoglu O; Yadav S; Cicek D; Schneider JJ
    Nanotechnology; 2016 Sep; 27(36):365502. PubMed ID: 27481641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces.
    Younis MI; Miles R; Jordy D
    J Micromech Microeng; 2006; 16(11):2463-2474. PubMed ID: 21720492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances in Flexible RF MEMS.
    Shi Y; Shen Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.
    Abdolahad M; Taghinejad M; Taghinejad H; Janmaleki M; Mohajerzadeh S
    Lab Chip; 2012 Mar; 12(6):1183-90. PubMed ID: 22294045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon Nanotube Paper-Based Electroanalytical Devices.
    Koo Y; Shanov VN; Yun Y
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photo Actuation Performance of Nanotube Sheet Incorporated Azobenzene Crosslinked Liquid Crystalline Polymer Nanocomposite.
    Bi M; He Y; Wang Y; Yang W; Qin B; Xu J; Wang X; Wang B; Dong Y; Gao Y; Li C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31018552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertically Integrated Electronics: New Opportunities from Emerging Materials and Devices.
    Kim S; Seo J; Choi J; Yoo H
    Nanomicro Lett; 2022 Oct; 14(1):201. PubMed ID: 36205848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film.
    Qiu L; Wang X; Su G; Tang D; Zheng X; Zhu J; Wang Z; Norris PM; Bradford PD; Zhu Y
    Sci Rep; 2016 Feb; 6():21014. PubMed ID: 26880221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition.
    Zhang S; Peng D; Xie H; Zheng Q; Zhang Y
    Nanomicro Lett; 2017; 9(1):12. PubMed ID: 30460309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application.
    Ni QQ; Zhu YF; Yu LJ; Fu YQ
    Nanoscale Res Lett; 2015; 10():174. PubMed ID: 25977651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porosimetry and packing morphology of vertically aligned carbon nanotube arrays via impedance spectroscopy.
    Mutha HK; Lu Y; Stein IY; Cho HJ; Suss ME; Laoui T; Thompson CV; Wardle BL; Wang EN
    Nanotechnology; 2017 Feb; 28(5):05LT01. PubMed ID: 28033120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies.
    Le HT; Haque RI; Ouyang Z; Lee SW; Fried SI; Zhao D; Qiu M; Han A
    Microsyst Nanoeng; 2021; 7():59. PubMed ID: 34567771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties.
    Jing L; Tay RY; Li H; Tsang SH; Huang J; Tan D; Zhang B; Teo EH; Tok AI
    Nanoscale; 2016 Jun; 8(21):11114-22. PubMed ID: 27227818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supercompressible Coaxial Carbon Nanotube@Graphene Arrays with Invariant Viscoelasticity over -100 to 500 °C in Ambient Air.
    Jing L; Li H; Lin J; Tay RY; Tsang SH; Teo EHT; Tok AIY
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9688-9695. PubMed ID: 29489328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology.
    Cullinan MA; Panas RM; Culpepper ML
    Nanotechnology; 2012 Aug; 23(32):325501. PubMed ID: 22825308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.