These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3730392)

  • 21. The intrinsic tyrosine fluorescence of histone H1. Steady state and fluorescence decay studies reveal heterogeneous emission.
    Libertini LJ; Small EW
    Biophys J; 1985 Jun; 47(6):765-72. PubMed ID: 4016197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler.
    Li H; Cao S; Zhang S; Chen J; Xu J; Knutson JR
    Phys Chem Chem Phys; 2023 Mar; 25(10):7239-7250. PubMed ID: 36853740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of redox state of disulfide bonds on the intrinsic fluorescence and denaturation of Trx-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea].
    Zhang T; Feng J; Li Y; Chen R; Tang LX; Pang XF; Ren ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):395-400. PubMed ID: 20384132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues.
    Isaev-Ivanov VV; Kozlov MG; Baitin DM; Masui R; Kuramitsu S; Lanzov VA
    Arch Biochem Biophys; 2000 Apr; 376(1):124-40. PubMed ID: 10729198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence-quenching-resolved spectroscopy of proteins.
    Wasylewski Z; poloczek H; Wasniowska A
    Eur J Biochem; 1988 Mar; 172(3):719-24. PubMed ID: 3350020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosine and tyrosinate fluorescence of S-100b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II).
    Turner RJ; Roche RS; Mani RS; Kay CM
    Biochem Cell Biol; 1989; 67(4-5):179-86. PubMed ID: 2775527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin.
    Henry ER; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6142-6. PubMed ID: 3476936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the difference in stability between horse and sperm whale myoglobins.
    Regis WC; Fattori J; Santoro MM; Jamin M; Ramos CH
    Arch Biochem Biophys; 2005 Apr; 436(1):168-77. PubMed ID: 15752722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues.
    Sackett DL; Ruvinov SB; Thompson J
    Protein Sci; 1999 Oct; 8(10):2121-9. PubMed ID: 10548058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanosecond-pulse fluorimetry of wheat-germ agglutinin (lectin).
    Privat JP; Wahl P; Monsigny M; Auchet JC
    Eur J Biochem; 1976 Sep; 68(2):573-80. PubMed ID: 976274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [pH-dependent changes in the tryptophan and porphyrin fluorescence of the apomyoglobin complex with protoporphyrin IX and methemoglobin].
    Postnikova GB; Iumakova EM; Vekshin NL
    Biokhimiia; 1986 Feb; 51(2):313-20. PubMed ID: 3697414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for cooperative hydrogen ligand binding to sperm whale metmyoglobin.
    Forlani L; Ioppolo C; Evans WJ; Marini MA
    Cell Mol Biol; 1990; 36(6):737-46. PubMed ID: 2083424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new component in protein fluorescence.
    Longworth JW
    Ann N Y Acad Sci; 1981; 366():237-45. PubMed ID: 6942747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the acid and alkaline dissociation of earthworm hemoglobin, Lumbricus terrestris, by front-face fluorescence spectroscopy.
    Harrington JP; Hirsch RE
    Biochim Biophys Acta; 1991 Feb; 1076(3):351-8. PubMed ID: 2001383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of carp metmyoglobin unfolding.
    Holladay LA
    Comp Biochem Physiol B; 1986; 83(2):365-70. PubMed ID: 3956157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide.
    Svistunenko DA; Dunne J; Fryer M; Nicholls P; Reeder BJ; Wilson MT; Bigotti MG; Cutruzzolà F; Cooper CE
    Biophys J; 2002 Nov; 83(5):2845-55. PubMed ID: 12414716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Horse heart metmyoglobin. A 2.8-A resolution three-dimensional structure determination.
    Evans SV; Brayer GD
    J Biol Chem; 1988 Mar; 263(9):4263-8. PubMed ID: 3346247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.