These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37304010)

  • 41. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing.
    Yuan M; Zhu J; Gong L; He L; Lee C; Han S; Chen C; He G
    BMC Biotechnol; 2019 Apr; 19(1):24. PubMed ID: 31035982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas genome editing in tomato improvement: Advances and applications.
    Tiwari JK; Singh AK; Behera TK
    Front Plant Sci; 2023; 14():1121209. PubMed ID: 36909403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.).
    Lasserre E; Bouquin T; Hernandez JA; Bull J; Pech JC; Balagué C
    Mol Gen Genet; 1996 Apr; 251(1):81-90. PubMed ID: 8628251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants.
    Son S; Park SR
    Front Plant Sci; 2022; 13():902413. PubMed ID: 35677236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit.
    Périn C; Gomez-Jimenez M; Hagen L; Dogimont C; Pech JC; Latché A; Pitrat M; Lelièvre JM
    Plant Physiol; 2002 May; 129(1):300-9. PubMed ID: 12011360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient CRISPR/Cas9-based gene knockout in watermelon.
    Tian S; Jiang L; Gao Q; Zhang J; Zong M; Zhang H; Ren Y; Guo S; Gong G; Liu F; Xu Y
    Plant Cell Rep; 2017 Mar; 36(3):399-406. PubMed ID: 27995308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L.
    Lao TD; Nguyen NH; Le TAH; Nguyen PDT
    Mol Biotechnol; 2023 Dec; ():. PubMed ID: 38102344
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic Mapping and QTL Analysis of Fruit Traits in Melon (
    Zhao H; Zhang T; Meng X; Song J; Zhang C; Gao P
    Curr Issues Mol Biol; 2023 Apr; 45(4):3419-3433. PubMed ID: 37185748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide identification of the expansin gene family in netted melon and their transcriptional responses to fruit peel cracking.
    Hu Y; Li Y; Zhu B; Huang W; Chen J; Wang F; Chen Y; Wang M; Lai H; Zhou Y
    Front Plant Sci; 2024; 15():1332240. PubMed ID: 38322822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit.
    Hu C; Sheng O; Deng G; He W; Dong T; Yang Q; Dou T; Li C; Gao H; Liu S; Yi G; Bi F
    Plant Biotechnol J; 2021 Apr; 19(4):654-656. PubMed ID: 33369835
    [No Abstract]   [Full Text] [Related]  

  • 56. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential Use of a Weak Ethylene Receptor Mutant, Sletr1-2, as Breeding Material To Extend Fruit Shelf Life of Tomato.
    Mubarok S; Okabe Y; Fukuda N; Ariizumi T; Ezura H
    J Agric Food Chem; 2015 Sep; 63(36):7995-8007. PubMed ID: 26208257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in Crop Breeding Through Precision Genome Editing.
    Nerkar G; Devarumath S; Purankar M; Kumar A; Valarmathi R; Devarumath R; Appunu C
    Front Genet; 2022; 13():880195. PubMed ID: 35910205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of loop-mediated isothermal amplification (LAMP)-based SNP markers for shelf-life in melon (Cucumis melo L.).
    Fukuta S; Mizukami Y; Ishida A; Kanbe M
    J Appl Genet; 2006; 47(4):303-8. PubMed ID: 17132894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.