These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 37304145)
1. Optimization of 3D printing and Ketabat F; Maris T; Duan X; Yazdanpanah Z; Kelly ME; Badea I; Chen X Front Bioeng Biotechnol; 2023; 11():1161804. PubMed ID: 37304145 [No Abstract] [Full Text] [Related]
2. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575 [TBL] [Abstract][Full Text] [Related]
3. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. Soltan N; Ning L; Mohabatpour F; Papagerakis P; Chen X ACS Biomater Sci Eng; 2019 Jun; 5(6):2976-2987. PubMed ID: 33405600 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652 [TBL] [Abstract][Full Text] [Related]
6. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Xu Y; Peng J; Richards G; Lu S; Eglin D J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316 [TBL] [Abstract][Full Text] [Related]
7. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
8. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
9. Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks. Wu X; Chen K; Chai Q; Liu S; Feng C; Xu L; Zhang D Biomater Adv; 2022 Feb; 133():112658. PubMed ID: 35067435 [TBL] [Abstract][Full Text] [Related]
10. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
11. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
13. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
14. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
16. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
18. 3D-printing of alginate/gelatin scaffold loading tannic acid@ZIF-8 for wound healing: In vitro and in vivo studies. Maghsoudi MAF; Aghdam RM; Asbagh RA; Moghaddaszadeh A; Ghaee A; Tafti SMA; Foroutani L; Tafti SHA Int J Biol Macromol; 2024 Apr; 265(Pt 1):130744. PubMed ID: 38493825 [TBL] [Abstract][Full Text] [Related]
19. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325 [TBL] [Abstract][Full Text] [Related]
20. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]