These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37304528)

  • 1. A Unified Approach to Shape and Topological Sensitivity Analysis of Discretized Optimal Design Problems.
    Gangl P; Gfrerer MH
    Appl Math Optim; 2023; 88(2):46. PubMed ID: 37304528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the electromagnetic scattering problem based on the topological derivative method.
    Pita Ruiz JL; Amad AAS; Gabrielli LH; Novotny AA
    Opt Express; 2019 Nov; 27(23):33586-33605. PubMed ID: 31878424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Topological State Derivative: An Optimal Control Perspective on Topology Optimisation.
    Baumann P; Mazari-Fouquer I; Sturm K
    J Geom Anal; 2023; 33(8):243. PubMed ID: 37204992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data assimilation for the heat equation using stabilized finite element methods.
    Burman E; Oksanen L
    Numer Math (Heidelb); 2018; 139(3):505-528. PubMed ID: 29973740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hole Nucleation Method Combining BESO and Topological Sensitivity for Level Set Topology Optimization.
    Cao S; Wang H; Tong J; Sheng Z
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity-based adaptive mesh refinement collocation method for dynamic optimization of chemical and biochemical processes.
    Xiao L; Liu P; Liu X; Zhang Z; Wang Y; Yang C; Gui W; Chen X; Zhu B
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1375-1389. PubMed ID: 28593458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully and semi-automated shape differentiation in
    Gangl P; Sturm K; Neunteufel M; Schöberl J
    Struct Multidiscipl Optim; 2021; 63(3):1579-1607. PubMed ID: 34776815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.
    Liu YF; Fan YY; Jiang XF; Baur DA
    Biomed Eng Online; 2017 Nov; 16(1):131. PubMed ID: 29141673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA shape space topology.
    Cupal J; Kopp S; Stadler PF
    Artif Life; 2000; 6(1):3-23. PubMed ID: 10943663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vademecum-based approach to multi-scale topological material design.
    Ferrer A; Oliver J; Cante JC; Lloberas-Valls O
    Adv Model Simul Eng Sci; 2016; 3(1):23. PubMed ID: 32355636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariable Linear Algebraic Discretization of Nonlinear Parabolic Equations for Computational Analysis.
    Zuo L; Mei F
    Comput Intell Neurosci; 2022; 2022():6323418. PubMed ID: 36211017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leapfrog/finite element method for fractional diffusion equation.
    Zhao Z; Zheng Y
    ScientificWorldJournal; 2014; 2014():982413. PubMed ID: 24955431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.
    Deng Y; Korvink JG
    Proc Math Phys Eng Sci; 2016 May; 472(2189):20150835. PubMed ID: 27279766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces.
    Geiersbach C; Scarinci T
    Comput Optim Appl; 2021; 78(3):705-740. PubMed ID: 33707813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method.
    Lee JS; Kim YY; Kim JS; Kang YJ
    J Acoust Soc Am; 2008 Apr; 123(4):2094-106. PubMed ID: 18397017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ANALYSIS AND DESIGN OF JUMP COEFFICIENTS IN DISCRETE STOCHASTIC DIFFUSION MODELS.
    Meinecke L; Engblom S; Hellander A; Lötstedt P
    SIAM J Sci Comput; 2016; 38(1):A55-A83. PubMed ID: 28611531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks.
    Dürrenberger P; Gupta A; Khammash M
    J Chem Phys; 2019 Apr; 150(13):134101. PubMed ID: 30954061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid.
    Bazhlekova E; Jin B; Lazarov R; Zhou Z
    Numer Math (Heidelb); 2015; 131(1):1-31. PubMed ID: 28615736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance analysis of a new optimization algorithm based on Finite Element Analysis.
    Ning Z; Gao Y; Wang A
    Sci Prog; 2020; 103(3):36850420950852. PubMed ID: 32893740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological Speed Limit.
    Van Vu T; Saito K
    Phys Rev Lett; 2023 Jan; 130(1):010402. PubMed ID: 36669213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.