These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37304580)
21. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Wang B; Guo Y; Chen X; Zeng C; Hu Q; Yin W; Li W; Xie H; Zhang B; Huang X; Yu F Int J Nanomedicine; 2018; 13():7395-7408. PubMed ID: 30519022 [TBL] [Abstract][Full Text] [Related]
22. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
23. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
24. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
25. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration. Lee SS; Santschi M; Ferguson SJ Biomacromolecules; 2021 Jun; 22(6):2460-2471. PubMed ID: 33971092 [TBL] [Abstract][Full Text] [Related]
26. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356 [TBL] [Abstract][Full Text] [Related]
27. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. He X; Liu Y; Yuan X; Lu L PLoS One; 2014; 9(8):e104061. PubMed ID: 25084008 [TBL] [Abstract][Full Text] [Related]
28. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129 [TBL] [Abstract][Full Text] [Related]
29. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622 [TBL] [Abstract][Full Text] [Related]
30. Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. Zhang Q; Qin M; Zhou X; Nie W; Wang W; Li L; He C J Mater Chem B; 2018 Nov; 6(42):6731-6743. PubMed ID: 32254690 [TBL] [Abstract][Full Text] [Related]
31. Controlled growth factor delivery system with osteogenic-angiogenic coupling effect for bone regeneration. Kang F; Yi Q; Gu P; Dong Y; Zhang Z; Zhang L; Bai Y J Orthop Translat; 2021 Nov; 31():110-125. PubMed ID: 34976731 [TBL] [Abstract][Full Text] [Related]
32. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related]
33. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. Wang Q; Zhang Y; Li B; Chen L J Mater Chem B; 2017 Sep; 5(33):6963-6972. PubMed ID: 32264345 [TBL] [Abstract][Full Text] [Related]
34. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Huling J; Min SI; Kim DS; Ko IK; Atala A; Yoo JJ Acta Biomater; 2019 Sep; 95():328-336. PubMed ID: 30953799 [TBL] [Abstract][Full Text] [Related]
35. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Lin D; Chai Y; Ma Y; Duan B; Yuan Y; Liu C Biomaterials; 2019 Mar; 196():122-137. PubMed ID: 29449015 [TBL] [Abstract][Full Text] [Related]
36. Strontium enhances BMP-2 mediated bone regeneration in a femoral murine bone defect model. Quade M; Vater C; Schlootz S; Bolte J; Langanke R; Bretschneider H; Gelinsky M; Goodman SB; Zwingenberger S J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):174-182. PubMed ID: 30950569 [TBL] [Abstract][Full Text] [Related]
37. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Wu T; Li B; Wang W; Chen L; Li Z; Wang M; Zha Z; Lin Z; Xia H; Zhang T Biomater Sci; 2020 Aug; 8(16):4603-4615. PubMed ID: 32627770 [TBL] [Abstract][Full Text] [Related]
38. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold. Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866 [TBL] [Abstract][Full Text] [Related]
39. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. Chen L; Shao L; Wang F; Huang Y; Gao F RSC Adv; 2019 Apr; 9(19):10494-10507. PubMed ID: 35515290 [TBL] [Abstract][Full Text] [Related]