These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 3730504)

  • 21. Theory and computation of nuclear magnetic resonance parameters.
    Vaara J
    Phys Chem Chem Phys; 2007 Oct; 9(40):5399-418. PubMed ID: 17925967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent NMR Stark spectroscopy.
    Tarasek MR; Goldfarb DJ; Kempf JG
    J Magn Reson; 2012 Jan; 214(1):346-51. PubMed ID: 22197485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear magnetic resonance spectra for l > 1 spins in dynamically heterogeneous systems with chemical exchange among environments.
    Zhang H; Bryant RG
    Biophys J; 1995 Jun; 68(6):2556-65. PubMed ID: 7647258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diels-alder adducts of 3,6-dibromophencyclone with short-chain N-n-alkylmaleimides: 1H and 13C nuclear magnetic resonance studies of hindered rotations and magnetic anisotropy, and ab initio calculations for optimized structures.
    Rosmarion K; Rothchild R
    Appl Spectrosc; 2005 Mar; 59(3):376-84. PubMed ID: 15901320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic resonance chemical shift in an arbitrary electronic spin state.
    Pennanen TO; Vaara J
    Phys Rev Lett; 2008 Apr; 100(13):133002. PubMed ID: 18517943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies.
    Platts JA; Gkionis K
    Phys Chem Chem Phys; 2009 Nov; 11(44):10331-9. PubMed ID: 19890517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.
    Esrafili MD; Behzadi H; Hadipour NL
    Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defining the statistical distribution of vesicle diameters facilitates quantitative assessment of spectral narrowing from small vesicles in protein/lipid interaction studies by 2H-NMR.
    Gale P
    Biochem Biophys Res Commun; 1993 May; 192(3):1042-8. PubMed ID: 8507179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deconvolution techniques for removing the effects of chemical shift in 19F nuclear magnetic resonance imaging of perfluorocarbon compounds.
    Busse LJ; Thomas SR; Pratt RG; Clark LC; Ackerman JL; Samaratunga RC; Hoffmann RE
    Med Phys; 1986; 13(4):518-24. PubMed ID: 3736510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1H NMR spectra of trypsin inhibitors from seeds of Cucurbitaceae plants. Resonance signals of methyl groups.
    Siemion IZ; Sobczyk K; Wilusz T; Polanowski A
    Acta Biochim Pol; 1984; 31(2):207-15. PubMed ID: 6485675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A linear- and sublinear-scaling method for calculating NMR shieldings in atomic orbital-based second-order Møller-Plesset perturbation theory.
    Maurer M; Ochsenfeld C
    J Chem Phys; 2013 May; 138(17):174104. PubMed ID: 23656111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo tissue analysis by NMR spectroscopy.
    den Hollander JA
    Diagn Imaging Clin Med; 1986; 55(1-2):9-19. PubMed ID: 3011347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Principles of nuclear magnetic resonance.
    Koutcher JA; Burt CT
    J Nucl Med; 1984 Jan; 25(1):101-11. PubMed ID: 6726415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weak intermolecular interactions in gas-phase nuclear magnetic resonance.
    Garbacz P; Piszczatowski K; Jackowski K; Moszynski R; Jaszuński M
    J Chem Phys; 2011 Aug; 135(8):084310. PubMed ID: 21895188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond k-space: spectral localization using higher order gradients.
    Pohmann R; Rommel E; von Kienlin M
    J Magn Reson; 1999 Dec; 141(2):197-206. PubMed ID: 10579943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance metabolomic profiling of Day 3 and 5 embryo culture medium does not predict pregnancy outcome in good prognosis patients: a prospective cohort study on single transferred embryos.
    Kirkegaard K; Svane AS; Nielsen JS; Hindkjær JJ; Nielsen NC; Ingerslev HJ
    Hum Reprod; 2014 Nov; 29(11):2413-20. PubMed ID: 25256566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suitable basis sets for accurate NMR chemical shift calculations: an application to in vivo studies of benzothiazole metabolites.
    Hoggan PE
    Interdiscip Sci; 2009 Jun; 1(2):99-107. PubMed ID: 20640824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins.
    Redfield C
    Methods; 2004 Sep; 34(1):121-32. PubMed ID: 15283921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.