These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3730506)

  • 21. Simultaneous measurement of rotational and translational diffusion of anisotropic colloids with a new integrated setup for fluorescence recovery after photobleaching.
    Kuipers BW; van de Ven MC; Baars RJ; Philipse AP
    J Phys Condens Matter; 2012 Jun; 24(24):245101. PubMed ID: 22569199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible photobleaching of fluorescein conjugates in air-saturated viscous solutions: singlet and triplet state quenching by tryptophan.
    Periasamy N; Bicknese S; Verkman AS
    Photochem Photobiol; 1996 Mar; 63(3):265-71. PubMed ID: 8881329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triplet-state detection of labeled proteins using fluorescence recovery spectroscopy.
    Corin AF; Blatt E; Jovin TM
    Biochemistry; 1987 Apr; 26(8):2207-17. PubMed ID: 2441744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of rotational motion in membranes using fluorescence recovery after photobleaching.
    Smith LM; Weis RM; McConnell HM
    Biophys J; 1981 Oct; 36(1):73-91. PubMed ID: 7284556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformation of human fibrinogen in solution from polarized triplet spectroscopy.
    Montejo JM; Naqvi KR; Lillo MP; González-Rodríguez J; Acuña AU
    Biochemistry; 1992 Aug; 31(33):7580-6. PubMed ID: 1324718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of concentration quenching on fluorescence recovery after photobleaching measurements.
    Robeson JL; Tilton RD
    Biophys J; 1995 May; 68(5):2145-55. PubMed ID: 7612859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifiability of models for intramolecular two-state excited-state processes with added quencher and coupled species-dependent rotational diffusion.
    Boens N; Novikov E; Szubiakowski JP; Ameloot M
    J Phys Chem A; 2005 Dec; 109(51):11655-64. PubMed ID: 16366614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence depletion measurements in various experimental geometries provide true emission and absorption anisotropies for the study of protein rotation.
    Londo TR; Rahman NA; Roess DA; Barisas BG
    Biophys Chem; 1993 Dec; 48(2):241-57. PubMed ID: 7507720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media.
    Berk DA; Yuan F; Leunig M; Jain RK
    Biophys J; 1993 Dec; 65(6):2428-36. PubMed ID: 8312481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of the translational mobility of concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence recovery after photobleaching.
    Jacobson K; Wu E; Poste G
    Biochim Biophys Acta; 1976 Apr; 433(1):215-22. PubMed ID: 177080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separating the contribution of translational and rotational diffusion to protein association.
    Kuttner YY; Kozer N; Segal E; Schreiber G; Haran G
    J Am Chem Soc; 2005 Nov; 127(43):15138-44. PubMed ID: 16248654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent absorption anisotropy and rotational diffusion of proteins in membranes.
    Kawato S; Kinosita K
    Biophys J; 1981 Oct; 36(1):277-96. PubMed ID: 7284553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Uversky VN; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2008 Dec; 112(49):15893-902. PubMed ID: 19367903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subnanosecond polarized fluorescence photobleaching: rotational diffusion of acetylcholine receptors on developing muscle cells.
    Yuan Y; Axelrod D
    Biophys J; 1995 Aug; 69(2):690-700. PubMed ID: 8527682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance.
    Fajer P; Thomas DD; Feix JB; Hyde JS
    Biophys J; 1986 Dec; 50(6):1195-202. PubMed ID: 3026503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.
    Blackman SM; Cobb CE; Beth AH; Piston DW
    Biophys J; 1996 Jul; 71(1):194-208. PubMed ID: 8804603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery.
    Timbs MM; Thompson NL
    Biophys J; 1990 Aug; 58(2):413-28. PubMed ID: 2207246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics.
    Burghardt TP; Axelrod D
    Biophys J; 1981 Mar; 33(3):455-67. PubMed ID: 7194696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compartmental modeling of the fluorescence anisotropy decay of a cylindrically symmetric brownian rotor: Identifiability analysis.
    Boens N; Novikov E; Ameloot M
    Chemphyschem; 2006 Dec; 7(12):2559-66. PubMed ID: 17072937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.