These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37305298)
21. Geochemical characterization of Lucaogou Formation and its correlation of tight oil accumulation in Jimsar Sag of Junggar Basin, Northwestern China. Qu J; Ding X; Zha M; Chen H; Gao C; Wang Z J Pet Explor Prod Technol; 2017; 7(3):699-706. PubMed ID: 28868213 [TBL] [Abstract][Full Text] [Related]
22. Distribution and Geochemical Significance of Rearranged Hopanes in Jurassic Source Rocks and Related Oils in the Center of the Sichuan Basin, China. Lu X; Li M; Wang X; Wei T; Tang Y; Hong H; Wu C; Yang X; Liu Y ACS Omega; 2021 Jun; 6(21):13588-13600. PubMed ID: 34095653 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the Geological Characteristics and Exploration Potential of Tight Oil in the Neogene Upper Ganchaigou Formation in the Zhahaquan Area, Qaidam Basin. Zhong G; Li Y ACS Omega; 2023 Aug; 8(30):27206-27215. PubMed ID: 37546660 [TBL] [Abstract][Full Text] [Related]
24. Micro/Nanopore Systems in Lacustrine Tight Oil Reservoirs, China. Li Q; Wu S; Zhai X; Pan S; Lin S J Nanosci Nanotechnol; 2021 Jan; 21(1):599-607. PubMed ID: 33213659 [TBL] [Abstract][Full Text] [Related]
25. Sedimentary Characteristics and Hydrocarbon-Generation Potential of the Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin, Northwest China. Hu X; Zhang X; Xie J; Cao H; Zheng X; Zhao Z; Cao J; Pu Q; Li Z; Zhou L ACS Omega; 2023 Oct; 8(39):35653-35669. PubMed ID: 37810680 [TBL] [Abstract][Full Text] [Related]
26. Organic Geochemistry and 1-D Basin Modeling of the Late Triassic Baluti Formation: Implication of Shale Oil Potential in the Kurdistan Region of Iraq. Mohialdeen IMJ; Hakimi MH; Fatah SS; Abdula RA; Khanaqa PA; Lathbl MA; Naseem W ACS Omega; 2024 Feb; 9(6):7085-7107. PubMed ID: 38371760 [TBL] [Abstract][Full Text] [Related]
27. Hydrocarbon generation potential in jurassic source rocks from hydrous pyrolysis experiments under ultradeep conditions. Cao Z; Liang M; Zhang X; Su L Sci Rep; 2024 Sep; 14(1):22360. PubMed ID: 39333338 [TBL] [Abstract][Full Text] [Related]
28. Characteristics and the Model of Thermal Evolution and Gas Generation of Late Paleozoic Coal in the Qinshui Basin, Based on Hydrous Pyrolysis. Hao R; Huang W; Jiu B ACS Omega; 2021 Jul; 6(27):17660-17673. PubMed ID: 34278151 [TBL] [Abstract][Full Text] [Related]
29. Thermal Evolution, Hydrocarbon Generation, and Heat Accumulation of a High Geothermal Coalfield: A Case Study of Pingdingshan Coalfield, China. Yu K; Wan Z; Li Y; Ju Y; Wang Z; Zhang Y; Zhao S; Zhao K ACS Omega; 2023 May; 8(17):15488-15500. PubMed ID: 37151538 [TBL] [Abstract][Full Text] [Related]
30. Fluid Phase Modeling and Evolution of Complex Reservoirs in the Halahatang Depression of the Tabei Uplift, Tarim Basin. Deng R; Wang Y; Chen C ACS Omega; 2022 May; 7(17):14933-14943. PubMed ID: 35557701 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of Neoproterozoic source rock potential in SE Pakistan and adjacent Bikaner-Nagaur Basin India. Yasin Q; Baklouti S; Sohail GM; Asif M; Xufei G Sci Rep; 2022 Jun; 12(1):11102. PubMed ID: 35773280 [TBL] [Abstract][Full Text] [Related]
32. Geochemistry and Organic Petrology of Middle Permian Source Rocks in Taibei Sag, Turpan-Hami Basin, China: Implication for Organic Matter Enrichment. Miao H; Wang Y; Zhao S; Guo J; Ni X; Gong X; Zhang Y; Li J ACS Omega; 2021 Nov; 6(47):31578-31594. PubMed ID: 34869983 [TBL] [Abstract][Full Text] [Related]
33. Molecular Compositions of Oil-Bearing Sandstones and Oil-Asphaltenes from the Kharir Oilfields in the Western Central Masila Basin, Yemen. Al-Matary AM; Hakimi MH; Mustapha KA; Rahim A; Naseem W; Al-Shawafi ZA ACS Omega; 2024 Apr; 9(15):17398-17414. PubMed ID: 38645344 [TBL] [Abstract][Full Text] [Related]
34. Element Geochemical Characteristics and Geological Significance of Mudstones from the Middle Jurassic Shaximiao Formation in Sichuan Basin, Southwest China. Ma D; Zhang Z; Zhou C; Cheng D; Hong H; Meng H; Yu X; Peng Z ACS Omega; 2023 Aug; 8(33):29979-30000. PubMed ID: 37636928 [TBL] [Abstract][Full Text] [Related]
35. Preliminary Assessment of the Resource and Exploitation Potential of Lower Permian Marine-Continent Transitional Facies Shale Gas in the Huainan Basin, Eastern China, Based on a Comprehensive Understanding of Geological Conditions. Liu H; Yumina DD; Liu J; Hu B; Xu H; Wu H; Shang J; Zheng K; Wei Q; Zhang M; Fang H ACS Omega; 2021 Mar; 6(12):8502-8516. PubMed ID: 33817512 [TBL] [Abstract][Full Text] [Related]
36. Origin and Distribution of Large Asphaltite in South China. Zhu G; Wang M; Li J; Zhao K; Li C; Chen Z; Zhou L; Wu Z ACS Omega; 2020 Dec; 5(47):30348-30355. PubMed ID: 33283082 [TBL] [Abstract][Full Text] [Related]
37. Indication of Formation Water Geochemistry for Hydrocarbon Preservation: New Applications of Machine Learning in Tight Sandstone Gas Reservoirs. Yang Z; Chen J; Wang S; Li X; Cheng W; Chen S ACS Omega; 2022 Oct; 7(41):36263-36276. PubMed ID: 36278069 [TBL] [Abstract][Full Text] [Related]
38. Mass Balance-Based Method for Quantifying the Oil Moveable Threshold and Oil Content Evaluation of Lacustrine Shale in the Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin. Wang E; Li C; Feng Y; Wang B; Liu G ACS Omega; 2022 Sep; 7(37):33560-33571. PubMed ID: 36157730 [TBL] [Abstract][Full Text] [Related]
39. Sedimentary Organic Facies Division and Hydrocarbon-Generation Potential of Source Rocks in Coal-Bearing Strata-A Case Study of the Upper Paleozoic in Huanghua Depression, Bohai Basin, China. Li C; Zeng J; Liu H; Li H; Bu X; Liu S ACS Omega; 2023 Aug; 8(31):28715-28732. PubMed ID: 37576622 [TBL] [Abstract][Full Text] [Related]
40. 1D basin modeling and hydrocarbon generation potential of the Late Carboniferous Limburg Group formations, Northwest European Basin, Netherlands. Thota ST; Shalaby MR Heliyon; 2023 Sep; 9(9):e19498. PubMed ID: 37662741 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]