These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37305902)
1. Estimation of contribution of CYP2D6 to tipepidine metabolism in humans and prolongation of the half-life of tipepidine by combination use with a CYP2D6 inhibitor in chimeric mice with humanised liver. Hayashi S; Kawaguchi H; Watanabe T; Miyawaki I; Fukami T; Nakajima M Xenobiotica; 2023 Apr; 53(4):241-247. PubMed ID: 37305902 [TBL] [Abstract][Full Text] [Related]
2. Prediction of combination effect of quinidine on the pharmacokinetics of tipepidine using a physiologically based pharmacokinetic model. Hayashi S; Kawaguchi H; Watanabe T; Miyawaki I; Fukami T; Nakajima M Xenobiotica; 2024 Mar; 54(3):107-115. PubMed ID: 38193900 [TBL] [Abstract][Full Text] [Related]
3. Hydroxychloroquine is Metabolized by Cytochrome P450 2D6, 3A4, and 2C8, and Inhibits Cytochrome P450 2D6, while its Metabolites also Inhibit Cytochrome P450 3A Paludetto MN; Kurkela M; Kahma H; Backman JT; Niemi M; Filppula AM Drug Metab Dispos; 2023 Mar; 51(3):293-305. PubMed ID: 36446607 [TBL] [Abstract][Full Text] [Related]
4. The effect of cimetidine on dextromethorphan O-demethylase activity of human liver microsomes and recombinant CYP2D6. Madeira M; Levine M; Chang TK; Mirfazaelian A; Bellward GD Drug Metab Dispos; 2004 Apr; 32(4):460-7. PubMed ID: 16680870 [TBL] [Abstract][Full Text] [Related]
5. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Jornil J; Jensen KG; Larsen F; Linnet K Drug Metab Dispos; 2010 Mar; 38(3):376-85. PubMed ID: 20007670 [TBL] [Abstract][Full Text] [Related]
6. The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine. Azuma J; Hasunuma T; Kubo M; Miyatake M; Koue T; Higashi K; Fujiwara T; Kitahara S; Katano T; Hara S Eur J Clin Pharmacol; 2012 Jan; 68(1):29-37. PubMed ID: 21739267 [TBL] [Abstract][Full Text] [Related]
7. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms. Sun J; Peng Y; Wu H; Zhang X; Zhong Y; Xiao Y; Zhang F; Qi H; Shang L; Zhu J; Sun Y; Liu K; Liu J; A J; Ho RJ; Wang G Drug Metab Dispos; 2015 May; 43(5):713-24. PubMed ID: 25681130 [TBL] [Abstract][Full Text] [Related]
8. Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Volotinen M; Turpeinen M; Tolonen A; Uusitalo J; Mäenpää J; Pelkonen O Drug Metab Dispos; 2007 Jul; 35(7):1135-41. PubMed ID: 17431033 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of CYP2D6 by quinidine and its effects on the metabolism of cilostazol. Bramer SL; Suri A Clin Pharmacokinet; 1999; 37 Suppl 2():41-51. PubMed ID: 10702886 [TBL] [Abstract][Full Text] [Related]
10. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics. Shen HW; Wu C; Jiang XL; Yu AM Biochem Pharmacol; 2010 Jul; 80(1):122-8. PubMed ID: 20206139 [TBL] [Abstract][Full Text] [Related]
11. Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes. Natsui K; Mizuno Y; Tani N; Yabuki M; Komuro S Eur J Drug Metab Pharmacokinet; 2007; 32(3):131-7. PubMed ID: 18062405 [TBL] [Abstract][Full Text] [Related]
12. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Yoshii K; Kobayashi K; Tsumuji M; Tani M; Shimada N; Chiba K Life Sci; 2000; 67(2):175-84. PubMed ID: 10901285 [TBL] [Abstract][Full Text] [Related]
13. Metoprolol-pridopidine drug-drug interaction and food effect assessments of pridopidine, a new drug for treatment of Huntington's disease. Rabinovich-Guilatt L; Steiner L; Hallak H; Pastino G; Muglia P; Spiegelstein O Br J Clin Pharmacol; 2017 Oct; 83(10):2214-2224. PubMed ID: 28449367 [TBL] [Abstract][Full Text] [Related]
14. Characterization of human cytochrome P450 isoenzymes involved in the metabolism of vinorelbine. Beulz-Riché D; Grudé P; Puozzo C; Sautel F; Filaquier C; Riché C; Ratanasavanh D Fundam Clin Pharmacol; 2005 Oct; 19(5):545-53. PubMed ID: 16176333 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Bakken GV; Molden E; Knutsen K; Lunder N; Hermann M Drug Metab Dispos; 2012 Sep; 40(9):1778-84. PubMed ID: 22688609 [TBL] [Abstract][Full Text] [Related]
16. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6. Song M; Hong M; Lee MY; Jee JG; Lee YM; Bae JS; Jeong TC; Lee S Food Chem Toxicol; 2013 Sep; 59():549-53. PubMed ID: 23835282 [TBL] [Abstract][Full Text] [Related]
17. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Wang JS; DeVane CL Drug Metab Dispos; 2003 Jun; 31(6):742-7. PubMed ID: 12756206 [TBL] [Abstract][Full Text] [Related]
18. Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Miura M; Ohkubo T Xenobiotica; 2007 Feb; 37(2):169-79. PubMed ID: 17484519 [TBL] [Abstract][Full Text] [Related]
19. Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. Swaisland HC; Ranson M; Smith RP; Leadbetter J; Laight A; McKillop D; Wild MJ Clin Pharmacokinet; 2005; 44(10):1067-81. PubMed ID: 16176119 [TBL] [Abstract][Full Text] [Related]
20. In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. Katoh M; Sawada T; Soeno Y; Nakajima M; Tateno C; Yoshizato K; Yokoi T J Pharm Sci; 2007 Feb; 96(2):428-37. PubMed ID: 17051594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]