These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37306209)
1. A systematic review of the inhibitory effect of extracts from edible parts of nuts on α-glucosidase activity. Farazi M; Houghton MJ; Murray M; Williamson G Food Funct; 2023 Jul; 14(13):5962-5976. PubMed ID: 37306209 [TBL] [Abstract][Full Text] [Related]
2. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Oh J; Jo SH; Kim JS; Ha KS; Lee JY; Choi HY; Yu SY; Kwon YI; Kim YC Int J Mol Sci; 2015 Apr; 16(4):8811-25. PubMed ID: 25906471 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory and in silico molecular docking of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa phytochemical compounds on human α-glucosidases. Nyathi B; Bvunzawabaya JT; Venissa P Mudawarima C; Manzombe E; Tsotsoro K; Selemani MA; Munyuki G; Rwere F J Ethnopharmacol; 2023 Aug; 312():116501. PubMed ID: 37100261 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant Activity and Inhibition of Carbohydrate Digestive Enzymes Activities of Marghich M; Daoudi NE; Amrani O; Addi M; Hano C; Chen JT; Mekhfi H; Ziyyat A; Bnouham M; Aziz M Front Biosci (Schol Ed); 2022 Sep; 14(4):25. PubMed ID: 36575835 [TBL] [Abstract][Full Text] [Related]
6. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. Miller N; Joubert E Planta Med; 2022 Oct; 88(12):1078-1091. PubMed ID: 34662924 [TBL] [Abstract][Full Text] [Related]
7. Comparison of edible brown algae extracts for the inhibition of intestinal carbohydrate digestive enzymes involved in glucose release from the diet. Attjioui M; Ryan S; Ristic AK; Higgins T; Goñi O; Gibney ER; Tierney J; O'Connell S J Nutr Sci; 2021; 10():e5. PubMed ID: 33889388 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Haguet Q; Le Joubioux F; Chavanelle V; Groult H; Schoonjans N; Langhi C; Michaux A; Otero YF; Boisseau N; Peltier SL; Sirvent P; Maugard T Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835060 [TBL] [Abstract][Full Text] [Related]
9. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Proença C; Ribeiro D; Freitas M; Fernandes E Crit Rev Food Sci Nutr; 2022; 62(12):3137-3207. PubMed ID: 33427491 [TBL] [Abstract][Full Text] [Related]
10. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012 [TBL] [Abstract][Full Text] [Related]
11. Fijian medicinal plants and their role in the prevention of Type 2 diabetes mellitus. Mala P; Khan GA; Gopalan R; Gedefaw D; Soapi K Biosci Rep; 2022 Nov; 42(11):. PubMed ID: 36149310 [TBL] [Abstract][Full Text] [Related]
12. Selected coffee (Coffea arabica L.) extracts inhibit intestinal α-glucosidases activities in-vitro and postprandial hyperglycemia in SD Rats. Mitiku H; Kim TY; Kang H; Apostolidis E; Lee JY; Kwon YI BMC Complement Med Ther; 2022 Sep; 22(1):249. PubMed ID: 36151573 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning and In Vitro Chemical Screening of Potential α-Amylase and α-Glucosidase Inhibitors from Thai Indigenous Plants. Srisongkram T; Waithong S; Thitimetharoch T; Weerapreeyakul N Nutrients; 2022 Jan; 14(2):. PubMed ID: 35057448 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases. Alvarado-Díaz CS; Gutiérrez-Méndez N; Mendoza-López ML; Rodríguez-Rodríguez MZ; Quintero-Ramos A; Landeros-Martínez LL; Rodríguez-Valdez LM; Rodríguez-Figueroa JC; Pérez-Vega S; Salmeron-Ochoa I; Leal-Ramos MY J Food Biochem; 2019 Jul; 43(7):e12896. PubMed ID: 31353692 [TBL] [Abstract][Full Text] [Related]
15. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Panwar H; Calderwood D; Grant IR; Grover S; Green BD Eur J Nutr; 2014 Oct; 53(7):1465-74. PubMed ID: 24414142 [TBL] [Abstract][Full Text] [Related]
17. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD; Staerk D; Jäger AK J Ethnopharmacol; 2016 Jun; 186():189-195. PubMed ID: 27041401 [TBL] [Abstract][Full Text] [Related]
18. Hypoglycemic activity of immature persimmon (Diospyros kaki Thunb.) extracts and its inhibition mechanism for α-amylase and α-glucosidase. Han Z; Ren W; Liu X; Lin N; Qu J; Duan X; Liu B Int J Biol Macromol; 2024 Feb; 257(Pt 2):128616. PubMed ID: 38070815 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effect of extracts from edible parts of nuts on α-amylase activity: a systematic review. Farazi M; Houghton MJ; Cardoso BR; Murray M; Williamson G Food Funct; 2024 May; 15(10):5209-5223. PubMed ID: 38717256 [TBL] [Abstract][Full Text] [Related]