BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37306233)

  • 1. SRSF3 shapes the structure of miR-17-92 cluster RNA and promotes selective processing of miR-17 and miR-20a.
    Ratnadiwakara M; Bahrudeen MN; Aikio E; Takabe P; Engel RM; Zahir Z; Jardé T; McMurrick PJ; Abud HE; Änkö ML
    EMBO Rep; 2023 Jul; 24(7):e56021. PubMed ID: 37306233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor.
    Le MN; Nguyen TD; Nguyen TA
    Life Sci Alliance; 2023 Apr; 6(4):. PubMed ID: 36750366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Effects of a Cancer-Linked Mutation in Pri-miR-30c RNA.
    Jones AN; Walbrun A; Falleroni F; Rief M; Sattler M
    J Mol Biol; 2022 Sep; 434(18):167705. PubMed ID: 35760371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variation and RNA structure regulate microRNA biogenesis.
    Fernandez N; Cordiner RA; Young RS; Hug N; Macias S; Cáceres JF
    Nat Commun; 2017 May; 8():15114. PubMed ID: 28466845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative map of human primary microRNA processing sites.
    Kim K; Baek SC; Lee YY; Bastiaanssen C; Kim J; Kim H; Kim VN
    Mol Cell; 2021 Aug; 81(16):3422-3439.e11. PubMed ID: 34320405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-1908-5p contributes to the oncogenic function of the splicing factor SRSF3.
    Kim HR; Shin CH; Lee H; Choi KH; Nam DH; Ohn T; Kim HH
    Oncotarget; 2017 Jan; 8(5):8342-8355. PubMed ID: 28039456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.
    Du P; Wang L; Sliz P; Gregory RI
    Cell; 2015 Aug; 162(4):885-99. PubMed ID: 26255770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
    Chaulk SG; Thede GL; Kent OA; Xu Z; Gesner EM; Veldhoen RA; Khanna SK; Goping IS; MacMillan AM; Mendell JT; Young HS; Fahlman RP; Glover JN
    RNA Biol; 2011; 8(6):1105-14. PubMed ID: 21955497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA.
    Burke JM; Kelenis DP; Kincaid RP; Sullivan CS
    RNA; 2014 Jul; 20(7):1068-77. PubMed ID: 24854622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tertiary structure mapping of the pri-miRNA miR-17~92.
    Chaulk SG; Fahlman RP
    Methods Mol Biol; 2014; 1182():43-55. PubMed ID: 25055900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural landscape of Microprocessor Mediated pri-
    Garg A; Shang R; Cvetanovic T; Lai EC; Joshua-Tor L
    bioRxiv; 2024 May; ():. PubMed ID: 38766155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRSF3-regulated miR-132/212 controls cell migration and invasion by targeting YAP1.
    Kim HR; Hwang SJ; Shin CH; Choi KH; Ohn T; Kim HH
    Exp Cell Res; 2017 Sep; 358(2):161-170. PubMed ID: 28624413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.
    Liu H; Liang C; Kollipara RK; Matsui M; Ke X; Jeong BC; Wang Z; Yoo KS; Yadav GP; Kinch LN; Grishin NV; Nam Y; Corey DR; Kittler R; Liu Q
    Mol Cell; 2016 Aug; 63(3):420-32. PubMed ID: 27425409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells.
    Ajiro M; Jia R; Yang Y; Zhu J; Zheng ZM
    Nucleic Acids Res; 2016 Feb; 44(4):1854-70. PubMed ID: 26704980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci.
    Pawlicki JM; Steitz JA
    Cell Cycle; 2009 Feb; 8(3):345-56. PubMed ID: 19177009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing.
    Auyeung VC; Ulitsky I; McGeary SE; Bartel DP
    Cell; 2013 Feb; 152(4):844-58. PubMed ID: 23415231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tankyrase promotes primary precursor miRNA processing to precursor miRNA.
    Mizutani A; Seimiya H
    Biochem Biophys Res Commun; 2020 Feb; 522(4):945-951. PubMed ID: 31806370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1.
    Kooshapur H; Choudhury NR; Simon B; Mühlbauer M; Jussupow A; Fernandez N; Jones AN; Dallmann A; Gabel F; Camilloni C; Michlewski G; Caceres JF; Sattler M
    Nat Commun; 2018 Jun; 9(1):2479. PubMed ID: 29946118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.