These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients. Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005 [TBL] [Abstract][Full Text] [Related]
63. Can A Multivariate Model for Survival Estimation in Skeletal Metastases (PATHFx) Be Externally Validated Using Japanese Patients? Ogura K; Gokita T; Shinoda Y; Kawano H; Takagi T; Ae K; Kawai A; Wedin R; Forsberg JA Clin Orthop Relat Res; 2017 Sep; 475(9):2263-2270. PubMed ID: 28560532 [TBL] [Abstract][Full Text] [Related]
64. Development of machine learning algorithms for prediction of mortality in spinal epidural abscess. Karhade AV; Shah AA; Bono CM; Ferrone ML; Nelson SB; Schoenfeld AJ; Harris MB; Schwab JH Spine J; 2019 Dec; 19(12):1950-1959. PubMed ID: 31255788 [TBL] [Abstract][Full Text] [Related]
65. Evaluation of different scoring systems for spinal metastases based on a Chinese cohort. Li Z; Guo L; Guo B; Zhang P; Wang J; Wang X; Yao W Cancer Med; 2023 Feb; 12(4):4125-4136. PubMed ID: 36128836 [TBL] [Abstract][Full Text] [Related]
67. Prediction of additional hospital days in patients undergoing cervical spine surgery with machine learning methods. Zhang B; Huang S; Zhou C; Zhu J; Chen T; Feng S; Huang C; Wang Z; Wu S; Liu C; Zhan X Comput Assist Surg (Abingdon); 2024 Dec; 29(1):2345066. PubMed ID: 38860617 [TBL] [Abstract][Full Text] [Related]
68. Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty. Kunze KN; Karhade AV; Polce EM; Schwab JH; Levine BR Arch Orthop Trauma Surg; 2023 Apr; 143(4):2181-2188. PubMed ID: 35508549 [TBL] [Abstract][Full Text] [Related]
69. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186 [TBL] [Abstract][Full Text] [Related]
70. What Factors Predict Adverse Discharge Disposition in Patients Older Than 60 Years Undergoing Lower-extremity Surgery? The Adverse Discharge in Older Patients after Lower-extremity Surgery (ADELES) Risk Score. Schaefer MS; Hammer M; Platzbecker K; Santer P; Grabitz SD; Murugappan KR; Houle T; Barnett S; Rodriguez EK; Eikermann M Clin Orthop Relat Res; 2021 Mar; 479(3):546-547. PubMed ID: 33196587 [TBL] [Abstract][Full Text] [Related]
71. What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty? Kumar V; Roche C; Overman S; Simovitch R; Flurin PH; Wright T; Zuckerman J; Routman H; Teredesai A Clin Orthop Relat Res; 2020 Oct; 478(10):2351-2363. PubMed ID: 32332242 [TBL] [Abstract][Full Text] [Related]
72. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer. Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504 [TBL] [Abstract][Full Text] [Related]
73. Performance assessment of the metastatic spinal tumor frailty index using machine learning algorithms: limitations and future directions. Massaad E; Williams N; Hadzipasic M; Patel SS; Fourman MS; Kiapour A; Schoenfeld AJ; Shankar GM; Shin JH Neurosurg Focus; 2021 May; 50(5):E5. PubMed ID: 33932935 [TBL] [Abstract][Full Text] [Related]
74. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients. Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M Front Public Health; 2022; 10():1019168. PubMed ID: 36276398 [TBL] [Abstract][Full Text] [Related]
75. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
76. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
77. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. Lee C; Light A; Alaa A; Thurtle D; van der Schaar M; Gnanapragasam VJ Lancet Digit Health; 2021 Mar; 3(3):e158-e165. PubMed ID: 33549512 [TBL] [Abstract][Full Text] [Related]
78. Predictive factors of survival in a surgical series of metastatic epidural spinal cord compression and complete external validation of 8 multivariate models of survival in a prospective North American multicenter study. Nater A; Tetreault LA; Kopjar B; Arnold PM; Dekutoski MB; Finkelstein JA; Fisher CG; France JC; Gokaslan ZL; Rhines LD; Rose PS; Sahgal A; Schuster JM; Vaccaro AR; Fehlings MG Cancer; 2018 Sep; 124(17):3536-3550. PubMed ID: 29975401 [TBL] [Abstract][Full Text] [Related]
79. Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model. Schönnagel L; Caffard T; Vu-Han TL; Zhu J; Nathoo I; Finos K; Camino-Willhuber G; Tani S; Guven AE; Haffer H; Muellner M; Arzani A; Chiapparelli E; Amoroso K; Shue J; Duculan R; Pumberger M; Zippelius T; Sama AA; Cammisa FP; Girardi FP; Mancuso CA; Hughes AP Spine J; 2024 Feb; 24(2):239-249. PubMed ID: 37866485 [TBL] [Abstract][Full Text] [Related]