BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37307286)

  • 1. Hydrogen-Deuterium Exchange Vibrational Raman Spectroscopy Distinguishes Distinct Amyloid Polymorphs Comprising Altered Core Architecture.
    Avni A; Joshi A; Mukhopadhyay S
    J Phys Chem Lett; 2023 Jun; 14(24):5592-5601. PubMed ID: 37307286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting structure of prion amyloid fibrils by hydrogen-deuterium exchange ultraviolet Raman spectroscopy.
    Shashilov V; Xu M; Makarava N; Savtchenko R; Baskakov IV; Lednev IK
    J Phys Chem B; 2012 Jul; 116(27):7926-30. PubMed ID: 22681559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the cross-beta core structure of amyloid fibrils by hydrogen-deuterium exchange deep ultraviolet resonance Raman spectroscopy.
    Xu M; Shashilov V; Lednev IK
    J Am Chem Soc; 2007 Sep; 129(36):11002-3. PubMed ID: 17705492
    [No Abstract]   [Full Text] [Related]  

  • 4. Dimethylsulfoxide-quenched hydrogen/deuterium exchange method to study amyloid fibril structure.
    Hoshino M; Katou H; Yamaguchi K; Goto Y
    Biochim Biophys Acta; 2007 Aug; 1768(8):1886-99. PubMed ID: 17499210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance.
    Lee YH; Goto Y
    Biochim Biophys Acta; 2012 Dec; 1824(12):1307-23. PubMed ID: 22885025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.
    Cobb NJ; Apostol MI; Chen S; Smirnovas V; Surewicz WK
    J Biol Chem; 2014 Jan; 289(5):2643-50. PubMed ID: 24338015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.
    Lu X; Wintrode PL; Surewicz WK
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1510-5. PubMed ID: 17242357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen/deuterium exchange mass spectrometry analysis of protein aggregates.
    Kheterpal I; Cook KD; Wetzel R
    Methods Enzymol; 2006; 413():140-66. PubMed ID: 17046395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen/deuterium exchange mass spectrometry--a window into amyloid structure.
    Kheterpal I; Wetzel R
    Acc Chem Res; 2006 Sep; 39(9):584-93. PubMed ID: 16981674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.
    Alexandrescu AT
    Methods Mol Biol; 2016; 1345():211-22. PubMed ID: 26453215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange.
    Smirnovas V; Kim JI; Lu X; Atarashi R; Caughey B; Surewicz WK
    J Biol Chem; 2009 Sep; 284(36):24233-41. PubMed ID: 19596861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding vibrational states of Concanavalin A amyloid fibrils.
    Piccirilli F; Schirò G; Vetri V; Lupi S; Perucchi A; Militello V
    Biophys Chem; 2015 Apr; 199():17-24. PubMed ID: 25776525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectral imaging of
    Watson MD; Flynn JD; Lee JC
    Biophys Chem; 2021 Feb; 269():106528. PubMed ID: 33418468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of enhanced VCD in amyloid fibril spectra: Effect of deuteriation and pH.
    Pazderková M; Pazderka T; Shanmugasundaram M; Dukor RK; Lednev IK; Nafie LA
    Chirality; 2017 Sep; 29(9):469-475. PubMed ID: 28710791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural variations in the cross-beta core of amyloid beta fibrils revealed by deep UV resonance Raman spectroscopy.
    Popova LA; Kodali R; Wetzel R; Lednev IK
    J Am Chem Soc; 2010 May; 132(18):6324-8. PubMed ID: 20405832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.