These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37307295)

  • 21. Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate.
    Wu J; Wu Z; Tao K; Liu C; Yang BR; Xie X; Lu X
    J Mater Chem B; 2019 Mar; 7(12):2063-2073. PubMed ID: 32254810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast-speed, Highly Sensitive, Flexible Humidity Sensors Based on a Printable Composite of Carbon Nanotubes and Hydrophilic Polymers.
    Ding S; Yin T; Zhang S; Yang D; Zhou H; Guo S; Li Q; Wang Y; Yang Y; Peng B; Yang R; Jiang Z
    Langmuir; 2023 Jan; 39(4):1474-1481. PubMed ID: 36641772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast Response Facile Fabricated IDE-Based Ultra-sensitive Humidity Sensor for Medical Applications.
    Ullah A; Zulfiqar MH; Khan MA; Zubair M; Mehmood MQ; Massoud Y
    ACS Omega; 2023 May; 8(19):16842-16850. PubMed ID: 37214719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Noncontact Sensing for Human-Machine Interaction.
    Lu L; Jiang C; Hu G; Liu J; Yang B
    Adv Mater; 2021 Apr; 33(16):e2100218. PubMed ID: 33683745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and Characterization of Flexible Capacitive Humidity Sensors Based on Graphene Oxide on Porous PTFE Substrates.
    Wei Z; Huang J; Chen W; Huang Q
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics.
    Lu Y; Yang G; Shen Y; Yang H; Xu K
    Nanomicro Lett; 2022 Jul; 14(1):150. PubMed ID: 35869398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability.
    Zhu P; Kuang Y; Wei Y; Li F; Ou H; Jiang F; Chen G
    Chem Eng J; 2021 Jan; 404():127105. PubMed ID: 32994751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots.
    Wu J; Yin C; Zhou J; Li H; Liu Y; Shen Y; Garner S; Fu Y; Duan H
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39817-39825. PubMed ID: 32805852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent, flexible, and stretchable WS
    Guo H; Lan C; Zhou Z; Sun P; Wei D; Li C
    Nanoscale; 2017 May; 9(19):6246-6253. PubMed ID: 28466937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and Materials Integration of Flexible Humidity Sensors for Emerging Applications.
    Delipinar T; Shafique A; Gohar MS; Yapici MK
    ACS Omega; 2021 Apr; 6(13):8744-8753. PubMed ID: 33842746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics.
    Lee MY; Lee HR; Park CH; Han SG; Oh JH
    Acc Chem Res; 2018 Nov; 51(11):2829-2838. PubMed ID: 30403337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film.
    Zhu P; Liu Y; Fang Z; Kuang Y; Zhang Y; Peng C; Chen G
    Langmuir; 2019 Apr; 35(14):4834-4842. PubMed ID: 30892906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nanoforest-based humidity sensor for respiration monitoring.
    Chen G; Guan R; Shi M; Dai X; Li H; Zhou N; Chen D; Mao H
    Microsyst Nanoeng; 2022; 8():44. PubMed ID: 35498335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous Ionic Membrane Based Flexible Humidity Sensor and its Multifunctional Applications.
    Li T; Li L; Sun H; Xu Y; Wang X; Luo H; Liu Z; Zhang T
    Adv Sci (Weinh); 2017 May; 4(5):1600404. PubMed ID: 28546909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractal Design for Advancing the Performance of Chemoresistive Sensors.
    Hassan K; Tung TT; Yap PL; Rastin H; Stanley N; Nine MJ; Losic D
    ACS Sens; 2021 Oct; 6(10):3685-3695. PubMed ID: 34644058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of pH on High-Performance ZnO Resistive Humidity Sensors Using One-Step Synthesis.
    Yu S; Zhang H; Zhang J; Li Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Sensitive MoS
    Zhao J; Li N; Yu H; Wei Z; Liao M; Chen P; Wang S; Shi D; Sun Q; Zhang G
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28692765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible and Highly Conductive Textiles Induced by Click Chemistry for Sensitive Motion and Humidity Monitoring.
    Liu L; Ni Y; Mao J; Li S; Ng KH; Chen Z; Huang J; Cai W; Lai Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37878-37886. PubMed ID: 35948056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Garage-Fabricated, Ultrasensitive Capacitive Humidity Sensor Based on Tissue Paper.
    Ullah A; Zulfiqar MH; Khan MA; Ali M; Zubair M; Mehmood MQ; Massoud Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of rGO-Doping on the Performance of SnO
    Yan H; Chen Z; Zeng L; Wang Z; Zheng G; Zhou R
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.