BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37307363)

  • 1. Bandwidths of vocal tract resonances in physical models compared to transmission-line simulations.
    Birkholz P; Blandin R; Kürbis S
    J Acoust Soc Am; 2023 Jun; 153(6):3281. PubMed ID: 37307363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of lips on the production of vowels based on finite element simulations and experiments.
    Arnela M; Blandin R; Dabbaghchian S; Guasch O; Alías F; Pelorson X; Van Hirtum A; Engwall O
    J Acoust Soc Am; 2016 May; 139(5):2852. PubMed ID: 27250177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal Tract Resonance Detection at Low Frequencies: Improving Physical and Transducer Configurations.
    Thilakan J; B T B; P M S; Chen JM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.
    Vampola T; Horáček J; Laukkanen AM; Švec JG
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):14-23. PubMed ID: 23517635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the losses in the vocal tract on determination of the area function.
    Gülmezoğlu MB; Barkana A
    Biomed Mater Eng; 2003; 13(2):159-66. PubMed ID: 12775906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation.
    Fleischer M; Mainka A; Kürbis S; Birkholz P
    PLoS One; 2018; 13(3):e0193708. PubMed ID: 29543829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of the Implementation of Teeth in Three-Dimensional Vocal Tract Models.
    Traser L; Birkholz P; Flügge TV; Kamberger R; Burdumy M; Richter B; Korvink JG; Echternach M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2379-2393. PubMed ID: 28898358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller.
    Švec JG; Schutte HK; Chen CJ; Titze IR
    J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Computational Modeling of the Effects of Voice Therapy Using Tubes.
    Horáček J; Radolf V; Laukkanen AM
    J Speech Lang Hear Res; 2019 Jul; 62(7):2227-2244. PubMed ID: 31251676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustment of the Vocal Tract Shape via Biofeedback: A Case Study.
    Hoyer P; Graf S
    J Voice; 2019 Jul; 33(4):482-489. PubMed ID: 29454552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the peak glottal area affects linear predictive coding-based formant estimates of vowels.
    Birkholz P; Gabriel F; Kürbis S; Echternach M
    J Acoust Soc Am; 2019 Jul; 146(1):223. PubMed ID: 31370636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of whisper and creak vocal mechanisms on vocal tract resonances.
    Swerdlin Y; Smith J; Wolfe J
    J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.
    Howard DM
    J Voice; 2018 Nov; 32(6):660-667. PubMed ID: 29111337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynamic Effect of the Valleculae on Singing Voice - An Exploratory Study Using 3D Printed Vocal Tracts.
    Feng M; Howard DM
    J Voice; 2023 Mar; 37(2):178-186. PubMed ID: 33397591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.