These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37307363)

  • 21. Rational approximations of viscous losses in vocal tract acoustic modeling.
    Wilhelms-Tricarico R; McGowan RS
    J Acoust Soc Am; 2004 Jun; 115(6):3195-201. PubMed ID: 15237843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The acoustical role of vocal tract in the horseshoe bat, Rhinolophus pusillus.
    Ma X; Li T; Lu H
    J Acoust Soc Am; 2016 Mar; 139(3):1264-71. PubMed ID: 27036262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the Relevant Criteria for Three-dimensional Vocal Tract Characterization.
    Vos RR; Murphy DT; Howard DM; Daffern H
    J Voice; 2018 Mar; 32(2):130-142. PubMed ID: 28647430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Realistic three-dimensional avian vocal tract model demonstrates how shape affects sound filtering (
    Kazemi A; Kesba M; Provini P
    J R Soc Interface; 2023 Jan; 20(198):20220728. PubMed ID: 36695126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voice efficiency for different voice qualities combining experimentally derived sound signals and numerical modeling of the vocal tract.
    Fleischer M; Rummel S; Stritt F; Fischer J; Bock M; Echternach M; Richter B; Traser L
    Front Physiol; 2022; 13():1081622. PubMed ID: 36620215
    [No Abstract]   [Full Text] [Related]  

  • 30. [Relations between the form of the vocal tract and the acoustic characteristics of the French vowels].
    Mrayati M; Carré R
    Phonetica; 1976; 33(4):285-306. PubMed ID: 996115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of vocal tract and subglottal resonances in producing vocal instabilities.
    Wade L; Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2017 Mar; 141(3):1546. PubMed ID: 28372071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2018 May; 143(5):2639. PubMed ID: 29857706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of resonance strategies of high pitch singing sopranos using dynamic three-dimensional magnetic resonance imaging.
    Köberlein M; Birkholz P; Burdumy M; Richter B; Burk F; Traser L; Echternach M
    J Acoust Soc Am; 2021 Dec; 150(6):4191. PubMed ID: 34972262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic analysis of trill sounds.
    Dhananjaya N; Yegnanarayana B; Bhaskararao P
    J Acoust Soc Am; 2012 Apr; 131(4):3141-52. PubMed ID: 22501086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.
    Arnela M; Guasch O; Alías F
    J Acoust Soc Am; 2013 Oct; 134(4):2946-54. PubMed ID: 24116430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.