These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37307384)

  • 1. In situ Electropolymerized 3D Microporous Cobalt-Porphyrin Nanofilm for Highly Effective Molecular Electrocatalytic Reduction of Carbon Dioxide.
    Wang C; Chen Y; Su D; Man WL; Lau KC; Han L; Zhao L; Zhan D; Zhu X
    Adv Mater; 2023 Sep; 35(38):e2303179. PubMed ID: 37307384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-Rich Pincer Ligand-Coupled Cobalt Porphyrin Polymer with Single-Atom Sites for Efficient (Photo)Electrocatalytic CO
    Wang T; Guo L; Pei H; Chen S; Li R; Zhang J; Peng T
    Small; 2021 Nov; 17(45):e2102957. PubMed ID: 34585522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO
    Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T
    Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO
    Zhu M; Chen J; Huang L; Ye R; Xu J; Han YF
    Angew Chem Int Ed Engl; 2019 May; 58(20):6595-6599. PubMed ID: 30689279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enlarging the π-Conjugation of Cobalt Porphyrin for Highly Active and Selective CO
    Dou S; Sun L; Xi S; Li X; Su T; Fan HJ; Wang X
    ChemSusChem; 2021 May; 14(9):2126-2132. PubMed ID: 33754489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Phthalocyanine-Porphyrin-based Conjugated Microporous Polymer-derived Bifunctional Electrocatalysts for Zn-Air Batteries.
    Li Y; Tao X; Wei J; Lv X; Wang HG
    Chem Asian J; 2020 Jul; 15(13):1970-1975. PubMed ID: 32390301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Push-Pull Type Co(II) Porphyrin for Enhanced Electrocatalytic CO
    Huang C; Bao W; Huang S; Wang B; Wang C; Han S; Lu C; Qiu F
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophilicity boron-doped cobalt phosphide nanosheets decorated carbon nanotube arrays self-supported electrode for overall water splitting.
    Guo R; Shi J; Ma K; Zhu W; Yang H; Sheng M
    J Colloid Interface Sci; 2023 Dec; 651():172-181. PubMed ID: 37542892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Metalloporphyrin Polymer Coated on Carbon Nanotubes as Bifunctional Electrocatalysts for Water Splitting.
    Wang Y; Song D; Li J; Shi Q; Zhao J; Hu Y; Zeng F; Wang N
    Inorg Chem; 2022 Jul; 61(26):10198-10204. PubMed ID: 35737475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Metal-Organic Framework Nanosheets with Cobalt-Porphyrins for High-Performance CO
    Zhang XD; Hou SZ; Wu JX; Gu ZY
    Chemistry; 2020 Feb; 26(7):1604-1611. PubMed ID: 31747078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting.
    Li W; Cheng G; Sun M; Wu Z; Liu G; Su D; Lan B; Mai S; Chen L; Yu L
    Nanoscale; 2019 Sep; 11(36):17084-17092. PubMed ID: 31506661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO
    Bohan A; Jin X; Wang M; Ma X; Wang Y; Zhang L
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):830-839. PubMed ID: 37898067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Core-Shell Co
    Yao C; Li J; Zhang Z; Gou C; Zhang Z; Pan G; Zhang J
    Small; 2022 May; 18(20):e2108094. PubMed ID: 35434925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D holey hierarchical nanoflowers assembled by cobalt phosphide embedded N-doped carbon nanosheets as bifunctional electrocatalyst for highly efficient overall water splitting.
    Zhi L; Tu J; Li J; Li M; Liu J
    J Colloid Interface Sci; 2022 Jun; 616():379-388. PubMed ID: 35220186
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Chen J; Zhu J; Li S; Li Z; Wu C; Wang D; Luo Z; Li Y; Luo K
    Dalton Trans; 2022 Oct; 51(38):14498-14507. PubMed ID: 36069863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Engineering of Co
    Bao W; Huang S; Tranca D; Feng B; Qiu F; Rodríguez-Hernández F; Ke C; Han S; Zhuang X
    ChemSusChem; 2022 Apr; 15(8):e202200090. PubMed ID: 35229489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Phosphide Composite Encapsulated within N,P-Doped Carbon Nanotubes for Synergistic Oxygen Evolution.
    Li H; Xu SM; Yan H; Yang L; Xu S
    Small; 2018 May; 14(19):e1800367. PubMed ID: 29633498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting Electrocatalytic CO
    Yu P; Lv X; Wang Q; Huang H; Weng W; Peng C; Zhang L; Zheng G
    Small; 2023 Jan; 19(4):e2205730. PubMed ID: 36420649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO
    Torbensen K; Han C; Boudy B; von Wolff N; Bertail C; Braun W; Robert M
    Chemistry; 2020 Mar; 26(14):3034-3038. PubMed ID: 31943389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-Metal Porphyrin-Based MOFs In Situ-Derived Hybrid Catalysts for Electrocatalytic CO
    Gao F; Wu YP; Wu XQ; Li DS; Yang G; Wang YY
    Inorg Chem; 2024 May; 63(19):8948-8957. PubMed ID: 38687980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.