BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37307411)

  • 21. Crystal structure, phase, and electrical conductivity of nanocrystalline W₀.₉₅Ti(₀.₀₅)O₃ thin films.
    Kalidindi NR; Manciu FS; Ramana CV
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):863-8. PubMed ID: 21323357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct oxygen removal technique for recycling titanium using molten MgCl2 salt.
    Okabe TH; Hamanaka Y; Taninouchi YK
    Faraday Discuss; 2016 Aug; 190():109-26. PubMed ID: 27244243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-Step High-Temperature Electrodeposition of Fe-Based Films as Efficient Water Oxidation Catalysts.
    Kamlesh ; Mehra P; Tavar D; Prakash S; Sharma RK; Srivastava AK; Paul A; Singh A
    Langmuir; 2023 May; 39(17):6088-6101. PubMed ID: 37068156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications.
    Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F
    Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems.
    Patel K; Hasannaeimi V; Sadeghilaridjani M; Muskeri S; Mahajan C; Mukherjee S
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys.
    Kutyła D; Nakajima K; Fukumoto M; Wojnicki M; Kołczyk-Siedlecka K
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Monolithic Potassium Geopolymer Ceramics Assisted by Molten Salt.
    Ai T; Hong FH; Kang YN; Zhang HR; Yan X
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal Emulsion-Based Synthesis, Characterization, and Properties of Sn-Based Microsphere Phase Change Materials.
    Zheng X; Luo W; Yu Y; Xue Z; Zheng Y; Liu Z
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and Characterization of Crystalline Silicon by Electrochemical Liquid-Liquid-Solid Crystal Growth in Ionic Liquid.
    Zhao Z; Yang C; Wu L; Zhang C; Wang R; Ma E
    ACS Omega; 2021 May; 6(18):11935-11942. PubMed ID: 34056348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation of Thin Silicon Carbide Films Formation by the Electrolytic Method.
    Galashev A; Abramova K
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy.
    Ohta N; Nomura K; Yagi I
    Langmuir; 2010 Dec; 26(23):18097-104. PubMed ID: 21043469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural Convection in Molten Salt Electrochemistry.
    Ge J; Cai B; Zhu F; Gao Y; Wang X; Chen Q; Wang M; Jiao S
    J Phys Chem B; 2023 Oct; 127(40):8669-8680. PubMed ID: 37781882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heuristics for Molten-Salt Synthesis of Single-Crystalline Ultrahigh-Nickel Layered Oxide Cathodes.
    Mesnier A; Manthiram A
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12895-12907. PubMed ID: 36857760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Total exfoliation of graphite in molten salts.
    Lavi A; Pyrikov M; Ohayon-Lavi A; Tadmor R; Shachar-Michaely G; Leibovitch Y; Ruse E; Vradman L; Regev O
    Phys Chem Chem Phys; 2023 Jan; 25(3):2618-2628. PubMed ID: 36602270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantificational 4D Visualization of Industrial Electrodeposition.
    Jiao H; Qu Z; Jiao S; Gao Y; Li S; Song WL; Wang M; Chen H; Fang D
    Adv Sci (Weinh); 2021 Dec; 8(24):e2101373. PubMed ID: 34708941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries.
    Lin N; Han Y; Wang L; Zhou J; Zhou J; Zhu Y; Qian Y
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3822-5. PubMed ID: 25631549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High resolution electron microscopy of amorphous interlayers between metal thin films and silicon.
    Chen LJ; Lin JH; Lee TL; Luo CH; Hsieh WY; Liang JM; Wang MH
    Microsc Res Tech; 1998 Jan; 40(2):136-51. PubMed ID: 9504125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.
    Li T; Ding D; Dong Z; Ning C
    Nanomaterials (Basel); 2017 Oct; 7(11):. PubMed ID: 29088083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Al and Al-Si alloy microspheres by ultrasonic irradiating the molten salt-aluminum immiscible system.
    Wang Z
    Ultrason Sonochem; 2019 Jan; 50():373-376. PubMed ID: 30314818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.