These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37307511)
1. Accelerate Large-Scale Biomass Residue Utilization via Cofiring to Help China Achieve Its 2030 Carbon-Peaking Goals. Yun H; Dai J; Tan T; Bi X Environ Sci Technol; 2023 Jun; 57(25):9163-9173. PubMed ID: 37307511 [TBL] [Abstract][Full Text] [Related]
2. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation. Morrow WR; Griffin WM; Matthews HS Environ Sci Technol; 2008 May; 42(10):3501-7. PubMed ID: 18546680 [TBL] [Abstract][Full Text] [Related]
3. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States. Robinson AL; Rhodes JS; Keith DW Environ Sci Technol; 2003 Nov; 37(22):5081-9. PubMed ID: 14655692 [TBL] [Abstract][Full Text] [Related]
4. Environmental and economic evaluation of bioenergy in Ontario, Canada. Zhang Y; Habibi S; MacLean HL J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282 [TBL] [Abstract][Full Text] [Related]
5. Water-carbon trade-off in China's coal power industry. Zhang C; Anadon LD; Mo H; Zhao Z; Liu Z Environ Sci Technol; 2014 Oct; 48(19):11082-9. PubMed ID: 25215622 [TBL] [Abstract][Full Text] [Related]
6. Multi-objective optimization of coal-fired power units considering deep peaking regulation in China. Feng S; Zhang X; Zhang H Environ Sci Pollut Res Int; 2023 Jan; 30(4):10756-10774. PubMed ID: 36076139 [TBL] [Abstract][Full Text] [Related]
7. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor. Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919 [TBL] [Abstract][Full Text] [Related]
8. State-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation. Morrow WR; Griffin WM; Matthews HS Environ Sci Technol; 2007 Oct; 41(19):6657-62. PubMed ID: 17969677 [TBL] [Abstract][Full Text] [Related]
9. The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China's Energy Planning Policy: Analysis Using a CGE Model. Hu H; Dong W Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612485 [TBL] [Abstract][Full Text] [Related]
10. Fine-Scale Analysis of the Energy-Land-Water Nexus: Nitrate Leaching Implications of Biomass Cofiring in the Midwestern United States. Sun S; Ordonez BV; Webster MD; Liu J; Kucharik CJ; Hertel T Environ Sci Technol; 2020 Feb; 54(4):2122-2132. PubMed ID: 31944680 [TBL] [Abstract][Full Text] [Related]
11. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology. Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588 [TBL] [Abstract][Full Text] [Related]
12. Alternative Pathway to Phase Down Coal Power and Achieve Negative Emission in China. Wang R; Li H; Cai W; Cui X; Zhang S; Li J; Weng Y; Song X; Cao B; Zhu L; Yu L; Li W; Huang L; Qi B; Ma W; Bian J; Zhang J; Nie Y; Fu J; Zhang J; Wang C Environ Sci Technol; 2022 Nov; 56(22):16082-16093. PubMed ID: 36321829 [TBL] [Abstract][Full Text] [Related]
13. The impact of electricity-carbon market coupling on system marginal clearing price and power supply cost. Yuan J; Zhang W; Shen Q; Zhang L; Zhou Y; Zhao C; Yang J; Zhang J Environ Sci Pollut Res Int; 2023 Jul; 30(35):84725-84741. PubMed ID: 37368216 [TBL] [Abstract][Full Text] [Related]
14. Significant co-benefits of air pollutant and CO Cai Q; Qiu X; Peng L; Li Q; Zhang Y Sci Total Environ; 2023 Aug; 887():164116. PubMed ID: 37172840 [TBL] [Abstract][Full Text] [Related]
15. Determinants of technical inefficiency in China's coal-fired power plants and policy recommendations for CO Nakaishi T; Kagawa S; Takayabu H; Lin C Environ Sci Pollut Res Int; 2021 Oct; 28(37):52064-52081. PubMed ID: 34002311 [TBL] [Abstract][Full Text] [Related]
16. Mapping the economy of coal power plants retrofitted with post-combustion and biomass co-firing carbon capture in China. Yuan J; Wang Y; Zhang W; Zhang J Environ Sci Pollut Res Int; 2023 Apr; 30(16):47438-47454. PubMed ID: 36738409 [TBL] [Abstract][Full Text] [Related]
17. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring. Zhang Y; Bo X; Zhao Y; Nielsen CP Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001 [TBL] [Abstract][Full Text] [Related]
18. How can China achieve its goal of peaking carbon emissions at minimal cost? A research perspective from shadow price and optimal allocation of carbon emissions. Ao Z; Fei R; Jiang H; Cui L; Zhu Y J Environ Manage; 2023 Jan; 325(Pt A):116458. PubMed ID: 36274307 [TBL] [Abstract][Full Text] [Related]
20. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. Wang C; Zhang L; Zhou P; Chang Y; Zhou D; Pang M; Yin H J Environ Manage; 2019 Sep; 246():758-767. PubMed ID: 31228689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]