BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37307919)

  • 1. Carnitine o-octanoyltransferase is a p53 target that promotes oxidative metabolism and cell survival following nutrient starvation.
    Sanford JD; Franklin D; Grois GA; Jin A; Zhang Y
    J Biol Chem; 2023 Jul; 299(7):104908. PubMed ID: 37307919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in carnitine octanoyltransferase activity induce alteration in fatty acid metabolism.
    Le Borgne F; Ben Mohamed A; Logerot M; Garnier E; Demarquoy J
    Biochem Biophys Res Commun; 2011 Jun; 409(4):699-704. PubMed ID: 21619872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Regulators of Peroxisomal Acyl-Carnitine Shuttle CROT and CRAT Promote Metastasis in Melanoma.
    Lasheras-Otero I; Feliu I; Maillo A; Moreno H; Redondo-Muñoz M; Aldaz P; Bocanegra A; Olias-Arjona A; Lecanda F; Fernandez-Irigoyen J; Santamaria E; Larrayoz IM; Gomez-Cabrero D; Wellbrock C; Vicent S; Arozarena I
    J Invest Dermatol; 2023 Feb; 143(2):305-316.e5. PubMed ID: 36058299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CROT (Carnitine O-Octanoyltransferase) Is a Novel Contributing Factor in Vascular Calcification via Promoting Fatty Acid Metabolism and Mitochondrial Dysfunction.
    Okui T; Iwashita M; Rogers MA; Halu A; Atkins SK; Kuraoka S; Abdelhamid I; Higashi H; Ramsaroop A; Aikawa M; Singh SA; Aikawa E
    Arterioscler Thromb Vasc Biol; 2021 Feb; 41(2):755-768. PubMed ID: 33356393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient.
    Violante S; Ijlst L; Te Brinke H; Koster J; Tavares de Almeida I; Wanders RJ; Ventura FV; Houten SM
    Biochim Biophys Acta; 2013 Sep; 1831(9):1467-74. PubMed ID: 23850792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism.
    Houten SM; Wanders RJA; Ranea-Robles P
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165720. PubMed ID: 32057943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.
    Chen L; Zhang J; Chen WN
    PLoS One; 2014; 9(1):e84853. PubMed ID: 24465440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short- and medium-chain carnitine acyltransferases and acyl-CoA thioesterases in mouse provide complementary systems for transport of beta-oxidation products out of peroxisomes.
    Westin MA; Hunt MC; Alexson SE
    Cell Mol Life Sci; 2008 Mar; 65(6):982-90. PubMed ID: 18264800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids.
    Ferdinandusse S; Mulders J; IJlst L; Denis S; Dacremont G; Waterham HR; Wanders RJ
    Biochem Biophys Res Commun; 1999 Sep; 263(1):213-8. PubMed ID: 10486279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine--metabolism and functions.
    Bremer J
    Physiol Rev; 1983 Oct; 63(4):1420-80. PubMed ID: 6361812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the long-chain carnitine acyltransferases.
    Brady PS; Ramsay RR; Brady LJ
    FASEB J; 1993 Aug; 7(11):1039-44. PubMed ID: 8370473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of miR-33 Expression and the Verification of Its Target Genes in the Fatty Liver of Geese.
    Zheng Y; Jiang S; Zhang Y; Zhang R; Gong D
    Int J Mol Sci; 2015 Jun; 16(6):12737-52. PubMed ID: 26057744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of carnitine in intracellular metabolism.
    Bremer J
    J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling.
    Chen J; Young ME; Chatham JC; Crossman DK; Dell'Italia LJ; Shalev A
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H64-75. PubMed ID: 27199118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of carnitine acyltransferases.
    Jogl G; Hsiao YS; Tong L
    Ann N Y Acad Sci; 2004 Nov; 1033():17-29. PubMed ID: 15591000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.
    Violante S; Achetib N; van Roermund CWT; Hagen J; Dodatko T; Vaz FM; Waterham HR; Chen H; Baes M; Yu C; Argmann CA; Houten SM
    FASEB J; 2019 Mar; 33(3):4355-4364. PubMed ID: 30540494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria.
    Jakobs BS; Wanders RJ
    Biochem Biophys Res Commun; 1995 Aug; 213(3):1035-41. PubMed ID: 7654220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective modulation of carnitine long-chain acyltransferase activities. Kinetics, inhibitors, and active sites of COT and CPT-II.
    Ramsay RR; Gandour RD
    Adv Exp Med Biol; 1999; 466():103-9. PubMed ID: 10709633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids.
    Vamecq J
    Biochem J; 1987 Feb; 241(3):783-91. PubMed ID: 3593222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation.
    Liu Y; He Y; Jin A; Tikunov AP; Zhou L; Tollini LA; Leslie P; Kim TH; Li LO; Coleman RA; Gu Z; Chen YQ; Macdonald JM; Graves LM; Zhang Y
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):E2414-22. PubMed ID: 24872453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.