These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37307952)
41. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Bastarache JA; Fremont RD; Kropski JA; Bossert FR; Ware LB Am J Physiol Lung Cell Mol Physiol; 2009 Dec; 297(6):L1035-41. PubMed ID: 19700643 [TBL] [Abstract][Full Text] [Related]
42. Nitrated fatty acid, 10-nitrooleate protects against hyperoxia-induced acute lung injury in mice. Narala VR; Thimmana LV; Panati K; Kolliputi N Int Immunopharmacol; 2022 Aug; 109():108838. PubMed ID: 35561478 [TBL] [Abstract][Full Text] [Related]
43. [Mechanism of high mobility group protein B1 in lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome]. Qu J; Feng J; Li J; Huang X; Qi B; Qian T; Wang X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Aug; 34(8):825-830. PubMed ID: 36177925 [TBL] [Abstract][Full Text] [Related]
45. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Moine P; McIntyre R; Schwartz MD; Kaneko D; Shenkar R; Le Tulzo Y; Moore EE; Abraham E Shock; 2000 Feb; 13(2):85-91. PubMed ID: 10670837 [TBL] [Abstract][Full Text] [Related]
46. Lumican is elevated in the lung in human and experimental acute respiratory distress syndrome and promotes early fibrotic responses to lung injury. Wang K; Wang Y; Cao Y; Wang H; Zhou Y; Gao L; Zeng Z; Cheng M; Jin X; Chen J; Wen F; Wang T J Transl Med; 2022 Sep; 20(1):392. PubMed ID: 36059026 [TBL] [Abstract][Full Text] [Related]
47. Protein phosphatase 2A activation attenuates inflammation in murine models of acute lung injury. McHugh WM; Russell WW; Fleszar AJ; Rodenhouse PE; Rietberg SP; Sun L; Shanley TP; Cornell TT Am J Physiol Lung Cell Mol Physiol; 2016 Nov; 311(5):L903-L912. PubMed ID: 27638902 [TBL] [Abstract][Full Text] [Related]
48. Impact and safety of open lung biopsy in patients with acute respiratory distress syndrome (ARDS). Ortiz G; Garay M; Mendoza D; Cardinal-Fernández P Med Intensiva (Engl Ed); 2019 Apr; 43(3):139-146. PubMed ID: 29501285 [TBL] [Abstract][Full Text] [Related]
49. MiR-199a-3p-regulated alveolar macrophage-derived secretory autophagosomes exacerbate lipopolysaccharide-induced acute respiratory distress syndrome. Xu X; Liu X; Dong X; Yang Y; Liu L Front Cell Infect Microbiol; 2022; 12():1061790. PubMed ID: 36523634 [TBL] [Abstract][Full Text] [Related]
50. Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). He F; Gao F; Cai N; Jiang M; Wu C Phytomedicine; 2022 Dec; 107():154474. PubMed ID: 36194973 [TBL] [Abstract][Full Text] [Related]
51. Does activation of the FcgammaRIIa play a role in the pathogenesis of the acute lung injury/acute respiratory distress syndrome? Fudala R; Krupa A; Stankowska D; Allen TC; Kurdowska AK Clin Sci (Lond); 2010 Jan; 118(8):519-26. PubMed ID: 20088831 [TBL] [Abstract][Full Text] [Related]
52. Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Roy S; Habashi N; Sadowitz B; Andrews P; Ge L; Wang G; Roy P; Ghosh A; Kuhn M; Satalin J; Gatto LA; Lin X; Dean DA; Vodovotz Y; Nieman G Shock; 2013 Jan; 39(1):28-38. PubMed ID: 23247119 [TBL] [Abstract][Full Text] [Related]
53. The Mitochondrial Calcium Uniporter of Pulmonary Type 2 Cells Determines Severity of ARDS. Islam MN; Gusarova GA; Das SR; Li L; Monma E; Anjaneyulu M; Owusu-Ansah E; Bhattacharya S; Bhattacharya J bioRxiv; 2021 Jan; ():. PubMed ID: 33469582 [TBL] [Abstract][Full Text] [Related]
54. Expression of sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 in malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model. Punsawad C; Viriyavejakul P PLoS One; 2019; 14(9):e0222098. PubMed ID: 31483837 [TBL] [Abstract][Full Text] [Related]
55. SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation. Wu Y; Wang Y; Liu B; Cheng Y; Qian H; Yang H; Li X; Yang G; Zheng X; Shen F Respir Res; 2020 May; 21(1):130. PubMed ID: 32460750 [TBL] [Abstract][Full Text] [Related]
56. New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Sanches Santos Rizzo Zuttion M; Moore SKL; Chen P; Beppu AK; Hook JL Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139112 [TBL] [Abstract][Full Text] [Related]
57. The role of the alveolar epithelial glycocalyx in acute respiratory distress syndrome. Rizzo AN; Schmidt EP Am J Physiol Cell Physiol; 2023 Apr; 324(4):C799-C806. PubMed ID: 36847444 [TBL] [Abstract][Full Text] [Related]
58. Airway Pathological Alterations Selectively Associated With Acute Respiratory Distress Syndrome and Diffuse Alveolar Damage - Narrative Review. Ortiz G; Garay M; Capelozzi V; Cardinal-Fernández P Arch Bronconeumol (Engl Ed); 2019 Jan; 55(1):31-37. PubMed ID: 29853259 [TBL] [Abstract][Full Text] [Related]
59. MCTR1 enhances the resolution of lipopolysaccharide-induced lung injury through STAT6-mediated resident M2 alveolar macrophage polarization in mice. Wang Q; Zhang HW; Mei HX; Ye Y; Xu HR; Xiang SY; Yang Q; Zheng SX; Smith FG; Jin SW J Cell Mol Med; 2020 Sep; 24(17):9646-9657. PubMed ID: 32757380 [TBL] [Abstract][Full Text] [Related]
60. Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Chen H; Lin H; Dong B; Wang Y; Yu Y; Xie K Inflamm Res; 2021 Aug; 70(8):915-930. PubMed ID: 34244821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]