These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37308641)

  • 1. Fabrication of Protein Macromolecular Frameworks (PMFs) and Their Application in Catalytic Materials.
    Uchida M; Selivanovitch E; McCoy K; Douglas T
    Methods Mol Biol; 2023; 2671():111-120. PubMed ID: 37308641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover.
    Selivanovitch E; Uchida M; Lee B; Douglas T
    ACS Nano; 2021 Oct; 15(10):15687-15699. PubMed ID: 34473481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles.
    McCoy K; Uchida M; Lee B; Douglas T
    ACS Nano; 2018 Apr; 12(4):3541-3550. PubMed ID: 29558117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions.
    Hewagama ND; Uchida M; Wang Y; Kraj P; Lee B; Douglas T
    Biomacromolecules; 2023 Aug; 24(8):3716-3728. PubMed ID: 37467146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials.
    Wang Y; Douglas T
    Acc Chem Res; 2022 May; 55(10):1349-1359. PubMed ID: 35507643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis.
    Uchida M; McCoy K; Fukuto M; Yang L; Yoshimura H; Miettinen HM; LaFrance B; Patterson DP; Schwarz B; Karty JA; Prevelige PE; Lee B; Douglas T
    ACS Nano; 2018 Feb; 12(2):942-953. PubMed ID: 29131580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks.
    Wang Y; Douglas T
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43621-43632. PubMed ID: 37695852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles.
    Depta PN; Dosta M; Wenzel W; Kozlowska M; Heinrich S
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linker-Mediated Assembly of Virus-Like Particles into Ordered Arrays via Electrostatic Control.
    Brunk NE; Uchida M; Lee B; Fukuto M; Yang L; Douglas T; Jadhao V
    ACS Appl Bio Mater; 2019 May; 2(5):2192-2201. PubMed ID: 35030658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion and molecular partitioning in hierarchically complex virus-like particles.
    Kraj P; Hewagama ND; Douglas T
    Virology; 2023 Mar; 580():50-60. PubMed ID: 36764014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions.
    Zhang Z; Ma R; Shi L
    Acc Chem Res; 2014 Apr; 47(4):1426-37. PubMed ID: 24694280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D superlattices
    Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J
    Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles.
    Uchida M; Brunk NE; Hewagama ND; Lee B; Prevelige PE; Jadhao V; Douglas T
    ACS Nano; 2022 May; 16(5):7662-7673. PubMed ID: 35549153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-standing plasmonic-nanorod superlattice sheets.
    Ng KC; Udagedara IB; Rukhlenko ID; Chen Y; Tang Y; Premaratne M; Cheng W
    ACS Nano; 2012 Jan; 6(1):925-34. PubMed ID: 22176669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Materials Engineering with DNA.
    McMillan JR; Hayes OG; Winegar PH; Mirkin CA
    Acc Chem Res; 2019 Jul; 52(7):1939-1948. PubMed ID: 31199115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology.
    Schwarz B; Uchida M; Douglas T
    Adv Virus Res; 2017; 97():1-60. PubMed ID: 28057256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.