BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3730878)

  • 1. Morphine injected into the periaqueductal gray attenuates brain stimulation-induced effects: an intensity discrimination study.
    Jenck F; Schmitt P; Karli P
    Brain Res; 1986 Jul; 378(2):274-84. PubMed ID: 3730878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination between aversive brain stimulations: effect of stimulation parameters.
    Lappuke R; Schmitt P; Karli P
    Behav Neural Biol; 1984 Jul; 41(2):164-79. PubMed ID: 6487217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphine applied to the mesencephalic central gray suppresses brain stimulation induced escape.
    Jenck F; Schmitt P; Karli P
    Pharmacol Biochem Behav; 1983 Aug; 19(2):301-8. PubMed ID: 6634879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation by morphine of aversive-like behavior induced by GABAergic blockade in periaqueductal gray or medial hypothalamus.
    Jenck F; Moreau JL; Karli P
    Pharmacol Biochem Behav; 1988 Sep; 31(1):193-200. PubMed ID: 3252250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dorsal raphe stimulation on escape induced by medial hypothalamic or central gray stimulation.
    Schmitt P; Sandner G; Colpaert FC; De Witte P
    Behav Brain Res; 1983 Jun; 8(3):289-307. PubMed ID: 6871015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of morphine on operant escape behavior and averse symptom induced by dorsal central gray stimulation in rats.
    Moriyama M; Gomita Y; Ichimaru Y; Araki Y
    Jpn J Pharmacol; 1991 Jan; 55(1):169-73. PubMed ID: 2041223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight induced by microinjection of D-tubocurarine or alpha-bungarotoxin into medial hypothalamus or periaqueductal gray matter: cholinergic or GABAergic mediation?
    Carrive P; Schmitt P; Karli P
    Behav Brain Res; 1986 Dec; 22(3):233-48. PubMed ID: 2878673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: comparison of opioid and GABA disinhibition.
    Morgan MM; Clayton CC
    Behav Brain Res; 2005 Oct; 164(1):61-6. PubMed ID: 16029902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independence of aversive and pain mechanisms in the dorsal periaqueductal gray matter of the rat.
    Borges PC; Coimbra NC; Brandão ML
    Braz J Med Biol Res; 1988; 21(5):1027-31. PubMed ID: 3248232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventral tegmental stimulation modulates centrally induced escape responding.
    Moreau JL; Schmitt P; Karli P
    Physiol Behav; 1986 Jan; 36(1):9-15. PubMed ID: 3952188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration.
    Rosén A; Zhang YX; Lund I; Lundeberg T; Yu LC
    Brain Res; 2004 Mar; 1001(1-2):87-94. PubMed ID: 14972657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventrolateral periaqueductal gray matter and the control of tonic immobility.
    Monassi CR; Leite-Panissi CR; Menescal-de-Oliveira L
    Brain Res Bull; 1999 Oct; 50(3):201-8. PubMed ID: 10566982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception.
    Ma QP; Shi YS; Han JS
    Brain Res; 1992 Jun; 583(1-2):292-5. PubMed ID: 1504835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors.
    Hassanain M; Bhatt S; Siegel A
    Brain Res; 2003 Aug; 981(1-2):201-9. PubMed ID: 12885442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electrolytic lesion of dorsolateral periaqueductal gray on analgesic response of morphine microinjected into the nucleus cuneiformis in rat.
    Haghparast A; Ahmad-Molaei L
    Neurosci Lett; 2009 Feb; 451(2):165-9. PubMed ID: 19146915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central gray and medial hypothalamic stimulation: correlation between escape behavior and unit activity.
    Sandner G; Schmitt P; Karli P
    Brain Res; 1979 Jul; 170(3):459-74. PubMed ID: 466424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential pharmacological reactivity of aversion induced by stimulation of periaqueductal gray or mesencephalic locomotor region.
    Depoortere R; Di Scala G; Angst MJ; Sandner G
    Pharmacol Biochem Behav; 1990 Oct; 37(2):311-6. PubMed ID: 1964221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray.
    Lu CL; Shaikh MB; Siegel A
    Brain Res; 1992 May; 581(1):123-32. PubMed ID: 1354005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NK1 receptors in the medial hypothalamus potentiate defensive rage behavior elicited from the midbrain periaqueductal gray of the cat.
    Bhatt S; Gregg TR; Siegel A
    Brain Res; 2003 Mar; 966(1):54-64. PubMed ID: 12646308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.