These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3730878)

  • 41. Role of GABA in the anti-aversive action of anxiolytics.
    Graeff FG; Brandão ML; Audi EA; Milani H
    Adv Biochem Psychopharmacol; 1986; 42():79-86. PubMed ID: 3766223
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential effects of intracerebral microinjection of morphine on approach and escape responses induced by lateral hypothalamic stimulation in the mouse.
    Bendani T; Cazala P
    Pharmacol Biochem Behav; 1988 Jun; 30(2):397-401. PubMed ID: 3174771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Opposite effects of ventral tegmental and periaqueductal gray morphine injections on lateral hypothalamic stimulation-induced feeding.
    Jenck F; Gratton A; Wise RA
    Brain Res; 1986 Dec; 399(1):24-32. PubMed ID: 3026572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status.
    Lysle DT; Hoffman KE; Dykstra LA
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1533-40. PubMed ID: 8667220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Involvement of periaqueductal gray matter in intestinal effect of centrally administered morphine.
    Sala M; Parolaro D; Crema G; Spazzi L; Giagnoni G; Cesana R; Gori E
    Eur J Pharmacol; 1983 Jul; 91(2-3):251-4. PubMed ID: 6617746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A neuropharmacological study of the periventricular neural substrate involved in flight.
    Schmitt P; Carrive P; Di Scala G; Jenck F; Brandao M; Bagri A; Moreau JL; Sandner G
    Behav Brain Res; 1986 Nov; 22(2):181-90. PubMed ID: 2878672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat.
    Jensen TS; Yaksh TL
    Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray.
    Morgan MM; Whitney PK; Gold MS
    Brain Res; 1998 Aug; 804(1):159-66. PubMed ID: 9729359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antinociceptive effects induced by intra-periaqueductal grey injection of the galanin receptor 1 agonist M617 in rats with morphine tolerance.
    Kong Q; Yu LC
    Neurosci Lett; 2013 Aug; 550():125-8. PubMed ID: 23831348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats.
    Pavlovic ZW; Bodnar RJ
    Brain Res; 1998 Jan; 779(1-2):158-69. PubMed ID: 9473650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of cholinergic drugs on aversive operant behavior induced by dorsal central gray stimulation in rats.
    Moriyama M; Ichimaru Y; Gomita Y; Fukuda T
    Jpn J Pharmacol; 1985 Nov; 39(3):339-47. PubMed ID: 4094182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mu and kappa opioid agonists elevate brain stimulation threshold for escape by inhibiting aversion.
    Carr KD; Bonnet KA; Simon EJ
    Brain Res; 1982 Aug; 245(2):389-93. PubMed ID: 6289969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mesolimbic neuronal loop of analgesia: I. Activation by morphine of a serotonergic pathway from periaqueductal gray to nucleus accumbens.
    Han JS; Xuan YT
    Int J Neurosci; 1986 Mar; 29(1-2):109-17. PubMed ID: 3486166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region.
    Bovier P; Broekkamp CL; Lloyd KG
    Brain Res; 1982 Sep; 248(2):313-20. PubMed ID: 6128055
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat.
    Campion KN; Saville KA; Morgan MM
    Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wild running elicited by microinjections of bicuculline or morphine into the inferior colliculus of rats: lack of effect of periaqueductal gray lesions.
    Bagri A; Di Scala G; Sandner G
    Pharmacol Biochem Behav; 1992 Apr; 41(4):727-32. PubMed ID: 1594640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strain-dependent effects of morphine injected into the periaqueductal gray area of mice.
    Nunes-de-Souza RL; Graeff FG; Siegfried B
    Braz J Med Biol Res; 1991; 24(3):291-9. PubMed ID: 1823243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray.
    Urban MO; Smith DJ
    Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.
    Bhatt S; Bhatt R; Zalcman SS; Siegel A
    Brain Behav Immun; 2008 Feb; 22(2):224-33. PubMed ID: 17890051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.