BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37309248)

  • 1. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes.
    Takeda K; Yamaguchi Y; Taguri M; Morita S
    Biom J; 2023 Oct; 65(7):e2200265. PubMed ID: 37309248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gBOIN-ET: The generalized Bayesian optimal interval design for optimal dose-finding accounting for ordinal graded efficacy and toxicity in early clinical trials.
    Takeda K; Morita S; Taguri M
    Biom J; 2022 Oct; 64(7):1178-1191. PubMed ID: 35561046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TITE-gBOIN: Time-to-event Bayesian optimal interval design to accelerate dose-finding accounting for toxicity grades.
    Takeda K; Xia Q; Liu S; Rong A
    Pharm Stat; 2022 Mar; 21(2):496-506. PubMed ID: 34862715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized Bayesian optimal interval design for dose optimization in immunotherapy.
    Xia Q; Takeda K; Yamaguchi Y; Zhang J
    Pharm Stat; 2024 Jan; ():. PubMed ID: 38295856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes.
    Takeda K; Taguri M; Morita S
    Pharm Stat; 2018 Jul; 17(4):383-395. PubMed ID: 29700965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials.
    Yuan Y; Lin R; Li D; Nie L; Warren KE
    Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian optimal interval design for dose optimization with a randomization scheme based on pharmacokinetics outcomes in oncology.
    Takeda K; Zhu J; Li R; Yamaguchi Y
    Pharm Stat; 2023; 22(6):1104-1115. PubMed ID: 37545018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive gBOIN design with shrinkage boundaries for phase I dose-finding trials.
    Mu R; Hu Z; Xu G; Pan H
    BMC Med Res Methodol; 2021 Dec; 21(1):278. PubMed ID: 34895153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TITE-BOIN12: A Bayesian phase I/II trial design to find the optimal biological dose with late-onset toxicity and efficacy.
    Zhou Y; Lin R; Lee JJ; Li D; Wang L; Li R; Yuan Y
    Stat Med; 2022 May; 41(11):1918-1931. PubMed ID: 35098585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison Between Simultaneous and Sequential Utilization of Safety and Efficacy for Optimal Dose Determination in Bayesian Model-Assisted Designs.
    Li R; Takeda K; Rong A
    Ther Innov Regul Sci; 2023 Jul; 57(4):728-736. PubMed ID: 37087525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage subgroup-specific time-to-event (2S-Sub-TITE): An adaptive two-stage time-to-toxicity design for subgroup-specific dose finding in phase I oncology trials.
    McGovern A; Chapple AG; Ma C
    Pharm Stat; 2022 Nov; 21(6):1138-1148. PubMed ID: 35560864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials.
    Chen Z; Cui Y; Owonikoko TK; Wang Z; Li Z; Luo R; Kutner M; Khuri FR; Kowalski J
    Contemp Clin Trials; 2014 Mar; 37(2):322-32. PubMed ID: 24530487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handling Incomplete or Late-Onset Toxicities in Early-Phase Dose-Finding Clinical Trials: Current Practice and Future Prospects.
    Yin Z; Mander AP; de Bono JS; Zheng H; Yap C
    JCO Precis Oncol; 2024 Jan; 8():e2300441. PubMed ID: 38181316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surv-CRM-12: A Bayesian phase I/II survival CRM for right-censored toxicity endpoints with competing disease progression.
    Andrillon A; Chevret S; Lee SM; Biard L
    Stat Med; 2022 Dec; 41(29):5753-5766. PubMed ID: 36259523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-to-event calibration-free odds design: A robust efficient design for phase I trials with late-onset outcomes.
    Jin H; Yin G
    Pharm Stat; 2023; 22(5):773-783. PubMed ID: 37095681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practicalities in running early-phase trials using the time-to-event continual reassessment method (TiTE-CRM) for interventions with long toxicity periods using two radiotherapy oncology trials as examples.
    van Werkhoven E; Hinsley S; Frangou E; Holmes J; de Haan R; Hawkins M; Brown S; Love SB
    BMC Med Res Methodol; 2020 Jun; 20(1):162. PubMed ID: 32571298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating historical information to improve dose optimization design with toxicity and efficacy endpoints: iBOIN-ET.
    Zhao Y; Liu R; Takeda K
    Pharm Stat; 2023; 22(3):440-460. PubMed ID: 36514849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
    Koopmeiners JS; Modiano J
    Clin Trials; 2014 Feb; 11(1):38-48. PubMed ID: 24082004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
    Kojima M
    BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.