These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37309282)

  • 21. Adaptive optics imaging of the retinal microvasculature.
    Bedggood P; Metha A
    Clin Exp Optom; 2020 Jan; 103(1):112-122. PubMed ID: 31797452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice.
    Santisakultarm TP; Cornelius NR; Nishimura N; Schafer AI; Silver RT; Doerschuk PC; Olbricht WL; Schaffer CB
    Am J Physiol Heart Circ Physiol; 2012 Apr; 302(7):H1367-77. PubMed ID: 22268102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid and protein exchange in microvascular networks: Importance of modelling heterogeneity in geometrical and biophysical properties.
    Guidoboni G; Marazzi NM; Fraser J; Sacco R; Palaniappan K; Huxley VH
    J Physiol; 2021 Oct; 599(20):4597-4624. PubMed ID: 34387386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The severity of microstrokes depends on local vascular topology and baseline perfusion.
    Schmid F; Conti G; Jenny P; Weber B
    Elife; 2021 May; 10():. PubMed ID: 34003107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling.
    Hossain MMN; Hu NW; Abdelhamid M; Singh S; Murfee WL; Balogh P
    Function (Oxf); 2023; 4(6):zqad046. PubMed ID: 37753184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Updated Review of Methods and Advancements in Microvascular Blood Flow Imaging.
    Lal C; Leahy MJ
    Microcirculation; 2016 Jul; 23(5):345-63. PubMed ID: 27096736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of blood flow and topology in developing vascular networks.
    Kloosterman A; Hierck B; Westerweel J; Poelma C
    PLoS One; 2014; 9(5):e96856. PubMed ID: 24823933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring capillary flow dynamics using interlaced two-photon volumetric scanning.
    Giblin JT; Park SW; Jiang J; Kılıç K; Kura S; Tang J; Boas DA; Chen IA
    J Cereb Blood Flow Metab; 2023 Apr; 43(4):595-609. PubMed ID: 36495178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks.
    Ebrahimi S; Bagchi P
    J R Soc Interface; 2022 Aug; 19(193):20220306. PubMed ID: 35946164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coronary Flow Assessment Using 3-Dimensional Ultrafast Ultrasound Localization Microscopy.
    Demeulenaere O; Sandoval Z; Mateo P; Dizeux A; Villemain O; Gallet R; Ghaleh B; Deffieux T; Deméné C; Tanter M; Papadacci C; Pernot M
    JACC Cardiovasc Imaging; 2022 Jul; 15(7):1193-1208. PubMed ID: 35798395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Ex Vivo Method for Time-Lapse Imaging of Cultured Rat Mesenteric Microvascular Networks.
    Azimi MS; Motherwell JM; Murfee WL
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Making microvascular networks work: angiogenesis, remodeling, and pruning.
    Pries AR; Secomb TW
    Physiology (Bethesda); 2014 Nov; 29(6):446-55. PubMed ID: 25362638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.
    Pinter SZ; Lacefield JC
    Ultrasound Med Biol; 2009 Jul; 35(7):1217-28. PubMed ID: 19394752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle.
    Ashikawa K; Kanatsuka H; Suzuki T; Takishima T
    Circ Res; 1986 Dec; 59(6):704-11. PubMed ID: 3815760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution.
    Stankovic Z; Jung B; Collins J; Russe MF; Carr J; Euringer W; Stehlin L; Csatari Z; Strohm PC; Langer M; Markl M
    Magn Reson Med; 2014 Aug; 72(2):477-84. PubMed ID: 24018798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the response of homogeneous and heterogeneous cerebral capillary networks to local changes in vessel diameters.
    Terman D
    J Theor Biol; 2023 Jul; 568():111509. PubMed ID: 37120132
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.