These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 37309328)
41. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program. Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712 [TBL] [Abstract][Full Text] [Related]
42. Assessment of the Potential for Genomic Selection To Improve Husk Traits in Maize. Cui Z; Dong H; Zhang A; Ruan Y; He Y; Zhang Z G3 (Bethesda); 2020 Oct; 10(10):3741-3749. PubMed ID: 32816916 [TBL] [Abstract][Full Text] [Related]
43. Genomic Selection for F Yamamoto E; Kataoka S; Shirasawa K; Noguchi Y; Isobe S Front Plant Sci; 2021; 12():645111. PubMed ID: 33747025 [TBL] [Abstract][Full Text] [Related]
44. Inbred Selection for Increased Resistance to Kernel Contamination with Fumonisins. Santiago R; Ramos AJ; Cao A; Malvar RA; Butrón A Toxins (Basel); 2023 Jul; 15(7):. PubMed ID: 37505713 [TBL] [Abstract][Full Text] [Related]
45. Early Selection Enabled by the Implementation of Genomic Selection in Sousa TV; Caixeta ET; Alkimim ER; Oliveira ACB; Pereira AA; Sakiyama NS; Zambolim L; Resende MDV Front Plant Sci; 2018; 9():1934. PubMed ID: 30671077 [TBL] [Abstract][Full Text] [Related]
46. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Ma J; Cao Y; Wang Y; Ding Y Front Plant Sci; 2022; 13():972791. PubMed ID: 36438102 [TBL] [Abstract][Full Text] [Related]
47. The value of early-stage phenotyping for wheat breeding in the age of genomic selection. Borrenpohl D; Huang M; Olson E; Sneller C Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300 [TBL] [Abstract][Full Text] [Related]
48. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. Anilkumar C; Sunitha NC; Harikrishna ; Devate NB; Ramesh S Planta; 2022 Sep; 256(5):87. PubMed ID: 36149531 [TBL] [Abstract][Full Text] [Related]
49. Integrated Approach in Genomic Selection to Accelerate Genetic Gain in Sugarcane. Sandhu KS; Shiv A; Kaur G; Meena MR; Raja AK; Vengavasi K; Mall AK; Kumar S; Singh PK; Singh J; Hemaprabha G; Pathak AD; Krishnappa G; Kumar S Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015442 [TBL] [Abstract][Full Text] [Related]
50. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Crossa J; Campos Gde L; Pérez P; Gianola D; Burgueño J; Araus JL; Makumbi D; Singh RP; Dreisigacker S; Yan J; Arief V; Banziger M; Braun HJ Genetics; 2010 Oct; 186(2):713-24. PubMed ID: 20813882 [TBL] [Abstract][Full Text] [Related]
51. Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations. Li J; Cheng D; Guo S; Chen C; Wang Y; Zhong Y; Qi X; Liu Z; Wang D; Wang Y; Liu W; Liu C; Chen S Front Plant Sci; 2023; 14():1109116. PubMed ID: 36778694 [TBL] [Abstract][Full Text] [Related]
53. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871 [TBL] [Abstract][Full Text] [Related]
54. Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize. Vivek BS; Krishna GK; Vengadessan V; Babu R; Zaidi PH; Kha LQ; Mandal SS; Grudloyma P; Takalkar S; Krothapalli K; Singh IS; Ocampo ETM; Xingming F; Burgueño J; Azrai M; Singh RP; Crossa J Plant Genome; 2017 Mar; 10(1):. PubMed ID: 28464061 [TBL] [Abstract][Full Text] [Related]
55. Phenotypic and molecular characterization of a set of tropical maize inbred lines from a public breeding program in Brazil. de Faria SV; Zuffo LT; Rezende WM; Caixeta DG; Pereira HD; Azevedo CF; DeLima RO BMC Genomics; 2022 Jan; 23(1):54. PubMed ID: 35030994 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Islam MS; Fang DD; Jenkins JN; Guo J; McCarty JC; Jones DC Mol Genet Genomics; 2020 Jan; 295(1):67-79. PubMed ID: 31473809 [TBL] [Abstract][Full Text] [Related]
57. Understanding the genomic selection for crop improvement: current progress and future prospects. Parveen R; Kumar M; Swapnil ; Singh D; Shahani M; Imam Z; Sahoo JP Mol Genet Genomics; 2023 Jul; 298(4):813-821. PubMed ID: 37162565 [TBL] [Abstract][Full Text] [Related]
58. Incorporating kernelized multi-omics data improves the accuracy of genomic prediction. Liang M; An B; Chang T; Deng T; Du L; Li K; Cao S; Du Y; Xu L; Zhang L; Gao X; Li J; Gao H J Anim Sci Biotechnol; 2022 Sep; 13(1):103. PubMed ID: 36127743 [TBL] [Abstract][Full Text] [Related]
59. Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models. Tolley SA; Brito LF; Wang DR; Tuinstra MR Front Genet; 2023; 14():1221751. PubMed ID: 37719703 [TBL] [Abstract][Full Text] [Related]
60. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]