These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37309489)

  • 21. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice.
    Choi JY; Lye ZN; Groen SC; Dai X; Rughani P; Zaaijer S; Harrington ED; Juul S; Purugganan MD
    Genome Biol; 2020 Feb; 21(1):21. PubMed ID: 32019604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.).
    Ma X; Han B; Tang J; Zhang J; Cui D; Geng L; Zhou H; Li M; Han L
    Plant Physiol Biochem; 2019 Nov; 144():274-282. PubMed ID: 31593900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indian rice "Kasalath" contains genes that improve traits of Japanese premium rice "Koshihikari".
    Madoka Y; Kashiwagi T; Hirotsu N; Ishimaru K
    Theor Appl Genet; 2008 Mar; 116(5):603-12. PubMed ID: 18097643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice.
    Hori K; Kataoka T; Miura K; Yamaguchi M; Saka N; Nakahara T; Sunohara Y; Ebana K; Yano M
    Breed Sci; 2012 Sep; 62(3):223-34. PubMed ID: 23226082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole-Genome Sequencing Revealed a Late-Maturing Isogenic Rice Koshihikari Integrated with
    Tomita M; Tokuyama R; Matsumoto S; Ishii K
    Int J Genomics; 2022; 2022():4565977. PubMed ID: 35036423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing.
    Arai-Kichise Y; Shiwa Y; Nagasaki H; Ebana K; Yoshikawa H; Yano M; Wakasa K
    Plant Cell Physiol; 2011 Feb; 52(2):274-82. PubMed ID: 21258067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars.
    Hori K; Sugimoto K; Nonoue Y; Ono N; Matsubara K; Yamanouchi U; Abe A; Takeuchi Y; Yano M
    Theor Appl Genet; 2010 May; 120(8):1547-57. PubMed ID: 20145904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated Ozone Deteriorates Grain Quality of Japonica Rice cv. Koshihikari, Even if it Does Not Cause Yield Reduction.
    Sawada H; Tsukahara K; Kohno Y; Suzuki K; Nagasawa N; Tamaoki M
    Rice (N Y); 2016 Dec; 9(1):7. PubMed ID: 26910783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Year-round flowering gene e1, a mutation at the E1 locus on rice chromosome 7 and its combination with green revolution gene sd1 in an isogenic cell line.
    Tomita M; Obara Y
    Gene; 2022 Mar; 815():146166. PubMed ID: 34995737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal-level genome assembly of the high-quality Xian/Indica rice (Oryza sativa L.) Xiangyaxiangzhan.
    Liang J; Kong L; Hu X; Fu C; Bai S
    BMC Plant Biol; 2023 Feb; 23(1):94. PubMed ID: 36782126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice.
    Xie X; Du H; Tang H; Tang J; Tan X; Liu W; Li T; Lin Z; Liang C; Liu YG
    Sci China Life Sci; 2021 Feb; 64(2):282-293. PubMed ID: 32737856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of rice chromosome segment substitution lines harboring
    Bessho-Uehara K; Furuta T; Masuda K; Yamada S; Angeles-Shim RB; Ashikari M; Takashi T
    Breed Sci; 2017 Sep; 67(4):408-415. PubMed ID: 29085251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan.
    Zhang H; Wang Y; Deng C; Zhao S; Zhang P; Feng J; Huang W; Kang S; Qian Q; Xiong G; Chang Y
    Sci China Life Sci; 2022 Feb; 65(2):398-411. PubMed ID: 34251582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L.
    Furuta T; Uehara K; Angeles-Shim RB; Shim J; Ashikari M; Takashi T
    Breed Sci; 2014 Mar; 63(5):468-75. PubMed ID: 24757386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines.
    Hao W; Zhu MZ; Gao JP; Sun SY; Lin HX
    J Integr Plant Biol; 2009 May; 51(5):500-12. PubMed ID: 19508361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines.
    Abe T; Nonoue Y; Ono N; Omoteno M; Kuramata M; Fukuoka S; Yamamoto T; Yano M; Ishikawa S
    Breed Sci; 2013 Sep; 63(3):284-91. PubMed ID: 24273423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a Genetic Factor Required for High γ-Isoform Concentration in Rice Vitamin E.
    Sekine D; Murata K; Kimura T; Nakagawa K; Miyazawa T
    J Agric Food Chem; 2016 Dec; 64(49):9368-9373. PubMed ID: 27960280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice (
    Yuan R; Zhao N; Usman B; Luo L; Liao S; Qin Y; Nawaz G; Li R
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32842674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a novel gene (Apq1) from the indica rice cultivar 'Habataki' that improves the quality of grains produced under high temperature stress.
    Murata K; Iyama Y; Yamaguchi T; Ozaki H; Kidani Y; Ebitani T
    Breed Sci; 2014 Dec; 64(4):273-81. PubMed ID: 25914581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of QTLs for rice brown spot resistance in backcross inbred lines derived from a cross between Koshihikari and CH45.
    Matsumoto K; Ota Y; Seta S; Nakayama Y; Ohno T; Mizobuchi R; Sato H
    Breed Sci; 2017 Dec; 67(5):540-543. PubMed ID: 29398949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.