These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37309577)

  • 21. Exchange between Interlayer and Intralayer Exciton in WSe
    Zhu M; Zhang Z; Zhang T; Liu D; Zhang H; Zhang Z; Li Z; Cheng Y; Huang W
    Nano Lett; 2022 Jun; 22(11):4528-4534. PubMed ID: 35588493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures.
    Li W; Lu X; Dubey S; Devenica L; Srivastava A
    Nat Mater; 2020 Jun; 19(6):624-629. PubMed ID: 32284596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bosonic Delocalization of Dipolar Moiré Excitons.
    Brem S; Malic E
    Nano Lett; 2023 May; 23(10):4627-4633. PubMed ID: 37184441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Strain-Tunable Interlayer Excitons in MoS
    Cho C; Wong J; Taqieddin A; Biswas S; Aluru NR; Nam S; Atwater HA
    Nano Lett; 2021 May; 21(9):3956-3964. PubMed ID: 33914542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interlayer exciton landscape in WS
    Thompson JJP; Lumsargis V; Feierabend M; Zhao Q; Wang K; Dou L; Huang L; Malic E
    Nanoscale; 2023 Jan; 15(4):1730-1738. PubMed ID: 36594632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum Phase Transitions of Trilayer Excitons in Atomically Thin Heterostructures.
    Slobodkin Y; Mazuz-Harpaz Y; Refaely-Abramson S; Gazit S; Steinberg H; Rapaport R
    Phys Rev Lett; 2020 Dec; 125(25):255301. PubMed ID: 33416340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-range transport of 2D excitons with acoustic waves.
    Peng R; Ripin A; Ye Y; Zhu J; Wu C; Lee S; Li H; Taniguchi T; Watanabe K; Cao T; Xu X; Li M
    Nat Commun; 2022 Mar; 13(1):1334. PubMed ID: 35289330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer excitons in transition-metal dichalcogenide heterostructures with type-II band alignment.
    Meckbach L; Huttner U; Bannow LC; Stroucken T; Koch SW
    J Phys Condens Matter; 2018 Sep; 30(37):374002. PubMed ID: 30095436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials.
    Deilmann T; Thygesen KS
    Nano Lett; 2018 May; 18(5):2984-2989. PubMed ID: 29665688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interlayer excitons in van der Waals heterostructures: Binding energy, Stark shift, and field-induced dissociation.
    Kamban HC; Pedersen TG
    Sci Rep; 2020 Mar; 10(1):5537. PubMed ID: 32218493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitons in Bilayer MoS_{2} Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response.
    Lorchat E; Selig M; Katsch F; Yumigeta K; Tongay S; Knorr A; Schneider C; Höfling S
    Phys Rev Lett; 2021 Jan; 126(3):037401. PubMed ID: 33543981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides.
    Arora A; Deilmann T; Marauhn P; Drüppel M; Schneider R; Molas MR; Vaclavkova D; Michaelis de Vasconcellos S; Rohlfing M; Potemski M; Bratschitsch R
    Nanoscale; 2018 Aug; 10(33):15571-15577. PubMed ID: 30090905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrically controllable router of interlayer excitons.
    Liu Y; Dini K; Tan Q; Liew T; Novoselov KS; Gao W
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust Interlayer Coupling in Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures.
    Chen Y; Liu Z; Li J; Cheng X; Ma J; Wang H; Li D
    ACS Nano; 2020 Aug; 14(8):10258-10264. PubMed ID: 32806069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrically tunable topological transport of moiré polaritons.
    Yu H; Yao W
    Sci Bull (Beijing); 2020 Sep; 65(18):1555-1562. PubMed ID: 36738073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers.
    Wang J; Shi Q; Shih EM; Zhou L; Wu W; Bai Y; Rhodes D; Barmak K; Hone J; Dean CR; Zhu XY
    Phys Rev Lett; 2021 Mar; 126(10):106804. PubMed ID: 33784140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybridized intervalley moiré excitons and flat bands in twisted WSe
    Brem S; Lin KQ; Gillen R; Bauer JM; Maultzsch J; Lupton JM; Malic E
    Nanoscale; 2020 May; 12(20):11088-11094. PubMed ID: 32400821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Omnidirectional exciton diffusion in quasi-2D hybrid organic-inorganic perovskites.
    Yu ZG
    J Chem Phys; 2022 Mar; 156(12):124706. PubMed ID: 35364870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Interlayer Exciton Emission in a TMDC Heterostructure via a Multi-Resonant Chirped Microresonator Upto Room Temperature.
    Palekar CC; Rosa B; Heermeier N; Shih CW; Limame I; Koulas-Simos A; Rahimi-Iman A; Reitzenstein S
    Adv Mater; 2024 Jul; ():e2402624. PubMed ID: 39007260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.