BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37309602)

  • 1. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations.
    Kann O
    J Neurochem; 2024 May; 168(5):608-631. PubMed ID: 37309602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure.
    Hollnagel JO; Cesetti T; Schneider J; Vazetdinova A; Valiullina-Rakhmatullina F; Lewen A; Rozov A; Kann O
    iScience; 2020 Jul; 23(7):101316. PubMed ID: 32653807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation.
    Chausse B; Malorny N; Lewen A; Poschet G; Berndt N; Kann O
    Sci Rep; 2024 Jun; 14(1):14405. PubMed ID: 38909138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus.
    Schneider J; Berndt N; Papageorgiou IE; Maurer J; Bulik S; Both M; Draguhn A; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2019 May; 39(5):859-873. PubMed ID: 29099662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolysis regulates the induction of lactate utilization for synaptic potentials after hypoxia in the granule cell of guinea pig hippocampus.
    Takata T; Yang B; Sakurai T; Okada Y; Yokono K
    Neurosci Res; 2004 Dec; 50(4):467-74. PubMed ID: 15567484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.
    Ivanov AI; Malkov AE; Waseem T; Mukhtarov M; Buldakova S; Gubkina O; Zilberter M; Zilberter Y
    J Cereb Blood Flow Metab; 2014 Mar; 34(3):397-407. PubMed ID: 24326389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Presynaptic ATP Supply for Basal and High-Demand Transmission.
    Sobieski C; Fitzpatrick MJ; Mennerick SJ
    J Neurosci; 2017 Feb; 37(7):1888-1899. PubMed ID: 28093477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative and nonoxidative metabolism of excited neurons and astrocytes.
    Gjedde A; Marrett S; Vafaee M
    J Cereb Blood Flow Metab; 2002 Jan; 22(1):1-14. PubMed ID: 11807388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
    Lucas SJ; Michel CB; Marra V; Smalley JL; Hennig MH; Graham BP; Forsythe ID
    J Physiol; 2018 May; 596(9):1699-1721. PubMed ID: 29430661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy substrates that fuel fast neuronal network oscillations.
    Galow LV; Schneider J; Lewen A; Ta TT; Papageorgiou IE; Kann O
    Front Neurosci; 2014; 8():398. PubMed ID: 25538552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocytic aerobic glycolysis provides lactate to support neuronal oxidative metabolism in the hippocampus.
    Dias C; Fernandes E; Barbosa RM; Laranjinha J; Ledo A
    Biofactors; 2023; 49(4):875-886. PubMed ID: 37070143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interneuron energy hypothesis: Implications for brain disease.
    Kann O
    Neurobiol Dis; 2016 Jun; 90():75-85. PubMed ID: 26284893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic modulation of neuronal gamma-band oscillations.
    Vodovozov W; Schneider J; Elzoheiry S; Hollnagel JO; Lewen A; Kann O
    Pflugers Arch; 2018 Sep; 470(9):1377-1389. PubMed ID: 29808353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue.
    Lewen A; Ta TT; Cesetti T; Hollnagel JO; Papageorgiou IE; Chausse B; Kann O
    J Neurosci Res; 2020 Oct; 98(10):1953-1967. PubMed ID: 32638411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices.
    Galeffi F; Foster KA; Sadgrove MP; Beaver CJ; Turner DA
    J Neurochem; 2007 Dec; 103(6):2449-61. PubMed ID: 17931363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms.
    Bas-Orth C; Schneider J; Lewen A; McQueen J; Hasenpusch-Theil K; Theil T; Hardingham GE; Bading H; Kann O
    J Cereb Blood Flow Metab; 2020 Nov; 40(11):2225-2239. PubMed ID: 31722597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.