These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37309708)
1. Chirality-Dependent Reprogramming of Macrophages by Chiral Nanozymes. Zhang Y; Cui T; Yang J; Huang Y; Ren J; Qu X Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307076. PubMed ID: 37309708 [TBL] [Abstract][Full Text] [Related]
3. Chiral Ruthenium Nanozymes with Self-Cascade Reaction Driven the NO Generation Induced Macrophage M1 Polarization Realizing the Lung Cancer "Cocktail Therapy". Chen X; Yang Y; Ye G; Liu S; Liu J Small; 2023 Jul; 19(28):e2207823. PubMed ID: 37029560 [TBL] [Abstract][Full Text] [Related]
4. Defect-Rich Metastable MoS Cui M; Qian L; Lu K; Liu J; Chu B; Wu X; Dong F; Song B; He Y Small; 2024 Oct; 20(43):e2402101. PubMed ID: 38888117 [TBL] [Abstract][Full Text] [Related]
5. Nanozyme-Based Enhanced Cancer Immunotherapy. Phan NM; Nguyen TL; Kim J Tissue Eng Regen Med; 2022 Apr; 19(2):237-252. PubMed ID: 35099759 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. Zhang W; Liu X; Cao S; Zhang Q; Chen X; Luo W; Tan J; Xu X; Tian J; Saw PE; Luo B ACS Nano; 2023 Aug; 17(15):14424-14441. PubMed ID: 37498878 [TBL] [Abstract][Full Text] [Related]
7. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Mo W; Liu S; Zhao X; Wei F; Li Y; Sheng X; Cao W; Ding M; Zhang W; Chen X; Meng L; Yao S; Diao W; Wei H; Guo H Adv Healthc Mater; 2023 Aug; 12(21):e2300191. PubMed ID: 37031357 [TBL] [Abstract][Full Text] [Related]
8. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Lv W; Cao M; Liu J; Hei Y; Bai J Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474 [TBL] [Abstract][Full Text] [Related]
9. Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy. Wu X; Cheng Y; Zheng R; Xu K; Yan J; Song P; Wang Y; Rauf A; Pan Y; Zhang H ACS Appl Mater Interfaces; 2021 May; 13(17):19825-19835. PubMed ID: 33881837 [TBL] [Abstract][Full Text] [Related]
10. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. Xu B; Cui Y; Wang W; Li S; Lyu C; Wang S; Bao W; Wang H; Qin M; Liu Z; Wei W; Liu H Adv Mater; 2020 Aug; 32(33):e2003563. PubMed ID: 32627937 [TBL] [Abstract][Full Text] [Related]
11. Charge-switchable nanoparticles enhance Cancer immunotherapy based on mitochondrial dynamic regulation and immunogenic cell death induction. Zhao M; Li J; Liu J; Xu M; Ji H; Wu S; Chen D; Hu H J Control Release; 2021 Jul; 335():320-332. PubMed ID: 34062192 [TBL] [Abstract][Full Text] [Related]
12. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer. Jian H; Wang X; Song P; Wu X; Zheng R; Wang Y; Zhang H Acta Biomater; 2022 Mar; 140():518-529. PubMed ID: 34923096 [TBL] [Abstract][Full Text] [Related]
13. Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy. Huang L; Xu R; Li W; Lv L; Lin C; Yang X; Yao Y; Saw PE; Xu X Acta Biomater; 2023 May; 162():98-109. PubMed ID: 36931417 [TBL] [Abstract][Full Text] [Related]
14. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach. Pal R; Chakraborty B; Nath A; Singh LM; Ali M; Rahman DS; Ghosh SK; Basu A; Bhattacharya S; Baral R; Sengupta M Int Immunopharmacol; 2016 Sep; 38():332-41. PubMed ID: 27344639 [TBL] [Abstract][Full Text] [Related]
15. A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy. Liu L; Wang Y; Guo X; Zhao J; Zhou S Small; 2020 Sep; 16(38):e2003543. PubMed ID: 32812355 [TBL] [Abstract][Full Text] [Related]
16. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. Zeng W; Yu M; Chen T; Liu Y; Yi Y; Huang C; Tang J; Li H; Ou M; Wang T; Wu M; Mei L Adv Sci (Weinh); 2022 Aug; 9(23):e2201703. PubMed ID: 35678111 [TBL] [Abstract][Full Text] [Related]
17. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Cao Y; Qiao B; Chen Q; Xie Z; Dou X; Xu L; Ran H; Zhang L; Wang Z Acta Biomater; 2023 Apr; 160():239-251. PubMed ID: 36774974 [TBL] [Abstract][Full Text] [Related]
18. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Han S; Wang W; Wang S; Yang T; Zhang G; Wang D; Ju R; Lu Y; Wang H; Wang L Theranostics; 2021; 11(6):2892-2916. PubMed ID: 33456579 [No Abstract] [Full Text] [Related]
19. Adoptive transfer of Fe Zhang Y; Liu S; Li D; He C; Wang D; Wei M; Zheng S; Li J Colloids Surf B Biointerfaces; 2023 Sep; 229():113452. PubMed ID: 37474429 [TBL] [Abstract][Full Text] [Related]
20. Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models. Carvalho SM; Mansur AAP; da Silveira IB; Pires TFS; Victória HFV; Krambrock K; Leite MF; Mansur HS Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]