BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37309708)

  • 1. Chirality-Dependent Reprogramming of Macrophages by Chiral Nanozymes.
    Zhang Y; Cui T; Yang J; Huang Y; Ren J; Qu X
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307076. PubMed ID: 37309708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional anisotropic palladium nanozymes reprogram macrophages to enhance collaborative chemodynamic therapy of colorectal cancer.
    Chen X; Jia Z; Wen Y; Huang Y; Yuan X; Chen Y; Liu Y; Liu J
    Acta Biomater; 2022 Oct; 151():537-548. PubMed ID: 35981687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Ruthenium Nanozymes with Self-Cascade Reaction Driven the NO Generation Induced Macrophage M1 Polarization Realizing the Lung Cancer "Cocktail Therapy".
    Chen X; Yang Y; Ye G; Liu S; Liu J
    Small; 2023 Jul; 19(28):e2207823. PubMed ID: 37029560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect-Rich Metastable MoS
    Cui M; Qian L; Lu K; Liu J; Chu B; Wu X; Dong F; Song B; He Y
    Small; 2024 Jun; ():e2402101. PubMed ID: 38888117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanozyme-Based Enhanced Cancer Immunotherapy.
    Phan NM; Nguyen TL; Kim J
    Tissue Eng Regen Med; 2022 Apr; 19(2):237-252. PubMed ID: 35099759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy.
    Zhang W; Liu X; Cao S; Zhang Q; Chen X; Luo W; Tan J; Xu X; Tian J; Saw PE; Luo B
    ACS Nano; 2023 Aug; 17(15):14424-14441. PubMed ID: 37498878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy.
    Mo W; Liu S; Zhao X; Wei F; Li Y; Sheng X; Cao W; Ding M; Zhang W; Chen X; Meng L; Yao S; Diao W; Wei H; Guo H
    Adv Healthc Mater; 2023 Aug; 12(21):e2300191. PubMed ID: 37031357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.
    Lv W; Cao M; Liu J; Hei Y; Bai J
    Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy.
    Wu X; Cheng Y; Zheng R; Xu K; Yan J; Song P; Wang Y; Rauf A; Pan Y; Zhang H
    ACS Appl Mater Interfaces; 2021 May; 13(17):19825-19835. PubMed ID: 33881837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy.
    Xu B; Cui Y; Wang W; Li S; Lyu C; Wang S; Bao W; Wang H; Qin M; Liu Z; Wei W; Liu H
    Adv Mater; 2020 Aug; 32(33):e2003563. PubMed ID: 32627937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-switchable nanoparticles enhance Cancer immunotherapy based on mitochondrial dynamic regulation and immunogenic cell death induction.
    Zhao M; Li J; Liu J; Xu M; Ji H; Wu S; Chen D; Hu H
    J Control Release; 2021 Jul; 335():320-332. PubMed ID: 34062192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer.
    Jian H; Wang X; Song P; Wu X; Zheng R; Wang Y; Zhang H
    Acta Biomater; 2022 Mar; 140():518-529. PubMed ID: 34923096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy.
    Huang L; Xu R; Li W; Lv L; Lin C; Yang X; Yao Y; Saw PE; Xu X
    Acta Biomater; 2023 May; 162():98-109. PubMed ID: 36931417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy.
    Zeng W; Yu M; Chen T; Liu Y; Yi Y; Huang C; Tang J; Li H; Ou M; Wang T; Wu M; Mei L
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201703. PubMed ID: 35678111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.
    Pal R; Chakraborty B; Nath A; Singh LM; Ali M; Rahman DS; Ghosh SK; Basu A; Bhattacharya S; Baral R; Sengupta M
    Int Immunopharmacol; 2016 Sep; 38():332-41. PubMed ID: 27344639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy.
    Liu L; Wang Y; Guo X; Zhao J; Zhou S
    Small; 2020 Sep; 16(38):e2003543. PubMed ID: 32812355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy.
    Cao Y; Qiao B; Chen Q; Xie Z; Dou X; Xu L; Ran H; Zhang L; Wang Z
    Acta Biomater; 2023 Apr; 160():239-251. PubMed ID: 36774974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes.
    Han S; Wang W; Wang S; Yang T; Zhang G; Wang D; Ju R; Lu Y; Wang H; Wang L
    Theranostics; 2021; 11(6):2892-2916. PubMed ID: 33456579
    [No Abstract]   [Full Text] [Related]  

  • 19. Adoptive transfer of Fe
    Zhang Y; Liu S; Li D; He C; Wang D; Wei M; Zheng S; Li J
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113452. PubMed ID: 37474429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models.
    Carvalho SM; Mansur AAP; da Silveira IB; Pires TFS; Victória HFV; Krambrock K; Leite MF; Mansur HS
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.