These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37309870)

  • 1. Performance of the COSMO solvation model for photoacidity and basicity in water.
    Ghiami-Shomami A; Hättig C
    J Comput Chem; 2023 Sep; 44(24):1941-1955. PubMed ID: 37309870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2.
    Sülzner N; Hättig C
    J Phys Chem A; 2022 Sep; 126(35):5911-5923. PubMed ID: 36037028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics.
    Bi TJ; Xu LK; Wang F; Ming MJ; Li XY
    Phys Chem Chem Phys; 2017 Dec; 19(48):32242-32252. PubMed ID: 29188829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of explicit solvent effects and specific interactions of hydroxypyrene photoacids in acetone, DMSO, and water.
    Sülzner N; Hättig C
    Phys Chem Chem Phys; 2023 Apr; 25(16):11130-11144. PubMed ID: 37021468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the accurate calculation of pKa values in water and acetonitrile.
    Muckerman JT; Skone JH; Ning M; Wasada-Tsutsui Y
    Biochim Biophys Acta; 2013; 1827(8-9):882-91. PubMed ID: 23567870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Reaction Field Schemes for Coupling Continuum Solvation Models with Wave Function Methods for Excitation Energies.
    Karbalaei Khani S; Marefat Khah A; Hättig C
    J Chem Theory Comput; 2020 Jul; 16(7):4554-4564. PubMed ID: 32470307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS).
    Sinnecker S; Rajendran A; Klamt A; Diedenhofen M; Neese F
    J Phys Chem A; 2006 Feb; 110(6):2235-45. PubMed ID: 16466261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long wavelength absorbing carbostyrils as test cases for different TDDFT procedures and solvent models.
    Kelterer AM; Uray G; Fabian WM
    J Mol Model; 2014 May; 20(5):2217. PubMed ID: 24740419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Conductor-like Polarizable Continuum Solvation Model (CPCM-X) for Semiempirical Methods.
    Stahn M; Ehlert S; Grimme S
    J Phys Chem A; 2023 Aug; 127(33):7036-7043. PubMed ID: 37567769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments.
    Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water solvent effects using continuum and discrete models: The nitromethane molecule, CH3NO2.
    Modesto-Costa L; Uhl E; Borges I
    J Comput Chem; 2015 Nov; 36(30):2260-9. PubMed ID: 26454252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods.
    Momeni MR; Brown A
    J Chem Theory Comput; 2015 Jun; 11(6):2619-32. PubMed ID: 26575559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COSMO-RI-ADC(2) excitation energies and excited state gradients.
    Karbalaei Khani S; Marefat Khah A; Hättig C
    Phys Chem Chem Phys; 2018 Jun; 20(24):16354-16363. PubMed ID: 29707719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of solvation free energies with DCOSMO-RS.
    Klamt A; Diedenhofen M
    J Phys Chem A; 2015 May; 119(21):5439-45. PubMed ID: 25635509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.